
NASA-CR-195806

AN ANALYSIS OF CARRIER PHASE JITTER IN AN MPSK

RECEIVER UTILIZING MAP ESTIMATION

Semi-Annual Status Report

Center for Space Telemetering and Telecommunications Systems Grant

Period Covered: July 1993 through January 1994

NASA Grant No. NAG 5-1491

Principal Investigator: Dr. William P. Osborne

,, ,

_:/ _1%,._j

(NASA-CR-195806) AN ANALYSIS OF

CARRIER PHASE JITTER IN AN MPSK

RECEIVER UTILIZING MAP ESTIMATION

Ph.D. Thesis Semidnnua| Status

Report, Jul. 1993 - Jan. 1994 (New
_exico State Univ.) 321 p

G3/I?

N94-29880

unclas

0004383

New Mexico State University

Electrical and Computer Engineering

Box 30001 - Dept. 3-0

Las Cruces, NM 88003



roll



AN ANALYSIS OF CARRIER PHASE JITTER IN AN MPSK RECEIVER

UTILIZING MAP ESTIMATION

BY

BRIAN THOMAS KOPP, B.S., M.S.

A Dissertation submitted to the Graduate School

in partial fulfillment of the requirements

for the Degree

Doctor of Philosophy, Engineering

Specialization in: Electrical Engineering

New Mexico State University

Las Cruces, New Mexico

May 1994



ABSTRACT

AN ANALYSIS OF CARRIER PHASE JITTER IN AN MPSK RECEIVER

UTILIZING MAP ESTIMATION

BY

BRIAN THOMAS KOPP, B.S., M.S.

Doctor of Philosophy, Engineering

Specialization in Electrical Engineering

New Mexico State University

Las Cruces, New Mexico, 1994

Dr. William P. Osborne, Chair

The use of 8 and 16 PSK TCM to support satellite

communications in an effort to achieve more bandwidth efficiency

in a power-limited channel has been proposed. This project

addresses the problem of carrier phase jitter in an M-PSK receiver

utilizing the high SNR approximation to the maximum aposteriori

estimation of carrier phase. In particular, numerical solutions to

the 8 and 16 PSK self-noise and phase detector gain in the carrier

tracking loop are presented. The effect of changing SNR on the

loop noise bandwidth is also discussed. These data are then used

to compute variance of phase error as a function of SNR.
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Simulation and hardware data are used to verify these

calculations. The results show that there is a threshold in the

variance of phase error versus SNR curves that is a strong

function of SNR and a weak function of loop bandwidth. The M-

PSK variance thresholds occur at SNR's in the range of practical

interest for the use of 8 and 16-PSK TCM. This suggests that phase

error variance is an important consideration in the design of these

systems.
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Chapter 1

INTRODUCTION

"Observe due measure, for right timing is in all things

the most important factor."

Hesiod,

poet & philosopher, 700 B.C.

The information age is moving forward at an impressive

speed. In recent years, global telecommunications traffic has

maintained a growth rate of no less than 15% compounded

annually [1]. This, coupled with the increased demands for

scientific data from space and atmospheric based remote sensing

and experimentation, has created a strong interest in increasing

the capacity and performance of available communication satellite

resources. Toward this end, New Mexico State University's space

telemetering and telecommunications research center has been

pursuing research projects whose thrust is the investigation of

more efficient methods of utilzing an existing satellite channel.

One area of particular interest has been the study of spectrally

efficient modulation formats.

A current modulation standard for satellite communications

is phase shift keying. Specifically, binary phase shift keying

(BPSK) and quadrature phase shift keying (QPSK) are used



extensively. For example, Intelsat earth station standards A, B, C,

E, and F have provisions for the use of QPSK in single channel per

carrier (SCPC) modes and time division multiple access (TDMA)

burst communication modes [2]. Further, the National Aeronautics

and Space Administration's (NASA) most extensive satellite

communication system, the tracking and data relay satellite

(TDRS) system, uses BPSK and QPSK for all of its user services and

TDRS tracking, telemetry, and command links with the exception

of one space shuttle service [3].

By modulating with BPSK it is possible to convey one bit of

information in a given channel through the transmission of one of

two phases of a sinusoidal carrier. With QPSK, four phases are

used and thus two bits can be conveyed in that same channel. It is

possible to extend this process through the use of eight phases to

send three bits (SPSK) or, going even further, using sixteen phases

to convey four bits (16PSK). Both extensions can utilize the same

channel as the BPSK and QPSK signals. However, if the signal

power level is maintained there will be a corresponding increase

in bit error rate (BER) as the distance between adjacent

constellation points drops with the conveyance of more phases. In

satellite systems, where both available channel bandwidth and

available power are usually at a premium it is desirable to

consider the use of 8PSK and 16PSK. For example, if it is desired to

increase the performance of a QPSK link without changing the

signalling speed, 2/3 rate 8PSK trellis coded modulation (TCM)
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could possibly be employed. TCM utilizes specific constellation

signal set expansions and convolutional encoding to achieve a

decrease in BER over uncoded O_PSK. If a two-fold increase in data

throughput is needed and loss in performance can be tolerated it

may be possible to consider 16PSK. The economical key to making

these extensions in an existing satellite channel is that the channel

must be a relay or "bent pipe" channel. If the channel involves a

regenerative transponder onboard the spacecraft this obviously

won't work without modification to the satellite. It is much

cheaper if the extensions involve engineering changes in the

ground communications equipment only.

With that in mind much research is being conducted in the

area of 8PSK and 16PSK [4] - [14]. Specifically the 8PSK and

16PSK TCM schemes have been paid particular attention in the

literature [4] - [12]. The current available research examines

higher order PSK systems, and specifically TCM systems, all

chiefly in terms of bit error rate performance. One important area

in the consideration of the use of these coherent schemes that has

not been fully addressed in the literature is the synchronization

performance of the receiver. Specifically, the quantity of carrier

phase variance, or jitter, in the reference generated in the

receiver for demodulation has not been calculated for popular

receiver designs, at various signal to noise ratios (SNR), under

tracking or "locked" conditions. This characteristic is an extremely

important one since jitter in the carrier translates into uncertainty

3



of the location of the received PSK constellation points. If this

jitter is large enough it can cause a degradation in BER

performance. Further, it will set a minimum range of operational

SNR below which the jitter will be so severe that phaselock in a

feedback-type receiver will be unattainable and/or

unmaintainable. This is of particular importance in 8PSK and

16PSK where the constellation points are much closer together

than BPSK and Q PSK. In the literature it is possible to find

research that does analyze the impact of certain amounts of

carrier phase jitter on the BER performance of 8PSK and 16PSK

receivers [5]. However, a quantitative analysis of how much jitter

is to be expected is generally unavailable.

Since the quantity of jitter depends on the type of receiver

used, the first task of this project was to decide which receiver to

analyze. The PSK signal being received is a double-sideband

suppressed carrier (DSB-SC) signal. The lack of a discrete carrier

component coupled with discrete phase transistions conveying the

data makes coherent demodulation of PSK signals a challenging

task. There are several receiver designs that were considered for

use in this study and they can be grouped roughly into two major

types: forward acting designs and feed-back designs. The decision

of which receiver design to use was based on several factors. First,

a practical receiver design was a criterion since it was intended

from the start to build an M-ary PSK (MPSK) link to verify

theoretical and simulation results for BPSK, O_PSK, 8PSK, and

4



16PSK. Second, the results of this study would be of great value to

NASA, the principal benefactor of the telemetering and

telecommunication center, so choosing a type of receiver that they

use and are familiar with, particularly at the TDRS White Sands

ground terminal (WSGT) twenty-five miles northeast of NMSU,

was also a consideration. At the WSGT a type of loop called a

modified Costas loop is used for the demodulation of both BPSK

and QPSK. This feedback loop design is based on the loop first

proposed by Costas [15] for the demodulation of DSB-SC signals.

The basic modified Costas loop is shown in Figure 1-1 and for

comparison the original Costas design is included in Figure 1-2.

The third consideration in the decision process was that the

choosen design needs to be backwards comparable with published

data, if possible, to ensure that the research data is accurate. In

other words, a baseline study with BPSK and QPSK using the same

design would allow for a comparison with published data on how

much jitter should occur. When the calculated, simulated, or

experimental data agrees closely with published data for BPSK

and QPSK then there is verification that the design being used is

accurate and extensions to 8PSK and 16PSK can be made. This

third consideration inferred that a design that is flexible and can

test BPSK through 16PSK with minimal modification is desirable

and that the choosen design be popular enough to have already

received attention in the literature in so far as BPSK and QPSK

carrier phase jitter are concerned.

5
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To facilitate making a choice, several receiver designs in

each of the categories mentioned above were examined. Two

forward-acting designs were examined. The times-N loop, shown

in Figure 1-3, is a forward-acting type loop in which the received

MPSK signal is multiplied by itself N times. The N in the loop's

name refer's to the M in MPSK. By performing this multiplication

the data is effectively multiplied out resulting in a spectral

component at a frequency of N times the carrier that can then be

tracked by a standard phaselock loop (or even filtered by a

bandpass filter). Unfortunately, as N, i.e., M increases, the

frequency at which the carrier phase tracking loop must operate

increases. For example, a 370 mega-Hertz (MHz) 16PSK signal

would require a "times 16" loop. The quiescent frequency of such

a phaselock loop would be approximately 6 Gigahertz (Ghz).

r(t) = sin(oyt+0i(t))

IH,,.oH ko c x N N_ c _ Loop

-_- Filter

| Divide

c°s(%t+0o(t)) 4"-1 By:N°3c
t T£

;h

VCO @ |

NO,c f.-
err ]

Figure 1-3. The "Times N" loop.
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Implementing a carrier tracking loop at such a frequency in

firmware or hardware can be prohibitory because of the

difficulties involved with working at such a high frequency.

Another forward-acting design, the feed-forward carrier

synchronization system, is an approach that contains no feedback

loop [16]. The system estimates carrier phase by calculating its

arctangent over 2N+l samples where N is varied depending on the

signal to noise ratio. The feed-forward system is shown in Figure

1-4. This system is used in burst communication applications since

the possibility of hang-up during acquisition, while not eliminated,

can be significantly reduced.1 In evaluating this loop in terms of

the decision criteria it is noted that there is a significant amount

of digital hardware and 2 pairs of phase detectors present in the

loop. While this alone is not a significant deterrent when

compared to some of the other designs, and in particular the

design finally chosen, it is noted that this design is substantially

different from that used by NASA at the WSGT. It contains no

feedback loop, as does the modified Costas loop, and its unique

ability to acquire a received signal quickly is not of great

importance at the WSGT where a particular communication link

between the ground station and a user spacecraft, called a "sho",

1Hang-up is a term for a condition that can occur in PLL's. When the intial
reference phase is 180 ° out from the lock point a phase error of zero will

occur at the output of most phase detectors. However this point is an
unstable equilibrium point for the PLL and thus noise will cause the phase
to move toward the lock point. This process can be slow to start and the
result is a long acquistion time or "hang-up" before the PLL locks.
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may last many minutes and result in the transmission of many

gigabits of data.

r(t) =_-sin(Oct+Oi(t))

I IADC --Filter
I I

2 sin(t%t_ I _omiv_g R P_ry] I_cili°n

t_ Oscillat°r I
_'2 cos(0¥t) I

_L-JMatchedLJ ADC

Y-I Filter ] I
Received

Data

Figure 1-4. The feed-forward loop.

The second type of PSK DSB-SC receiver design that was

considered is the feedback loop design. This loop has several

variations. Costas loops, demodulation/remodulation loops,

reverse modulation loops, and maximum aposteriori phase (MAP)

estimation loops are all forms of feedback loops. All of these

feedback loops involve the use of some form of PLL to provide a

coherent reference for demodulation, except in the reverse

modulation loop where a bandpass filter can be substituted [17,

pg. 177]. There are several feedback designs that fall into a special

category called decision-directed loops. A loop can be considered a
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decision-directed loop if at some point in the receiver the

transmitted baseband data is effectively recovered and used in

the demodulation process. Examples of decision-directed loops are

the O_PSK Costas loop with hard limiters and the MPSK high-SNR

approximation to the MAP estimation loop.

A feedback loop that is a type of Costas loop and that

showed early promise as a possible candidate for the research into

carrier phase jitter is a loop referred to as the Leclert and

Vandamme variation [18]. It is shown in Figure 1-5. In this loop

an error signal that drives a VCO is calculated from several hard-

limiter processors, each related to the recovered data. The hard

limiters provide the inputs to dual polar quantizers which

estimate the transmitted phase. These estimates are then used

along with the hard limiter outputs to calculate an error signal.

Two more types of feedback loops are the demodulation-

remodulation loop [17, Fig. 6.6, pg. 176] and the reverse

modulation loop [17, Fig. 6.7, pg.177]. In the former, the recovered

data is modulated onto the VCO reference and then phase

compared with the received signal. If good decisions are being

made then the only phase difference between the two signals will

be due to a carrier phase offset. In the reverse modulation loop

recovered baseband data is "reverse" modulated on to the

received signal. The resultant signal will have a spectral

component at the carrier frequency that can be tracked. Further,

in reverse modulation loops, like feed-forward systems, the

10
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chance of hang-up during acquistion can be minimized by

replacing the PLL with a bandpass filter.

The fourth type of feedback loop that was considered is the

MAP estimation loop. This loop uses an optimum aposteriori phase

estimation calculation, based on the recovered data, to determine

what the most likely transmitted signal carrier phase was. This

complex estimate is then used to calculate an error signal to drive

a VCO which provides the coherent reference.

In the early stages of the receiver design selection process

the feedback loops received the most consideration. All of the four

feedback designs mentioned above are relatively adaptable for

construction in an MPSK system. In contrast, the times-N loop is

adaptable to MPSK environments for construction but only at a

considerable cost. To support an M of 2, 4, 8, or 16 would, in

effect, require that four receivers be constructed if the task were

completed with analog circuitry. A digital implementation would

require substantial circuitry as well, and some form of wide

bandwidth numerically controlled oscillator to achieve the range

of from twice-the-carrier-frequency to 16 times the carrier

frequency. This lack of adaptability and the fact that times-N

loops aren't employed at the WSGT were sufficient drawbacks to

warrant withdrawal of this type of loop from consideration.

Although easily adaptable to the MPSK environment, the feed-

forward systems distinct variation from the feedback technique

used at the WSGT coupled with significantly large overall

12



hardware requirements, compared to several of the feedback

loops, effectively eliminated it from consideration as well. What

remained at this point in the selection process was to decide

which feedback loop to use for the research on carrier phase jitter.

Of the four feedback loops two stand out for their overall

simplicity of implementation. These are the Leclert and

Vandamme variation and the MAP estimation loop. The other two,

the demodulation-remodulation loop and the reverse modulation

loop, both require increased circuit complexity to implement when

compared to the first two loops and thus were eliminated from

consideration. Having narrowed the decision to the

Leclert/Vandamme and MAP estimation loops, it was decided that

simulations should be performed to compare the performance of

the two loops. While the methodology for conducting these

phaselock loop simulations will be discussed in detail later in this

dissertation, it should be noted here that the simulation source

code and results are presented in Appendix A. The results indicate

that the performance of the Leclert and Vandamme variation was

less satisfactory than that of the MAP estimation loop. This

performance difference is attributable to the Leclert and

Vandamme's discrete processing algorithm involving only

hardlimiters which results in a loop that performs like a "bang-

bang" servo control. It should be stressed that the difference in

performance was minimal. It should also be noted that the Leclert

and Vandamme variation requires a slight increase in digital
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circuitry compared to the MAP estimation loop. Neither of these

reasons was significant enough to dismiss the Leclert and

Vandamme variation by themselves. However, this loop design is

relatively new and little research has been published on it in the

literature. In contrast, research into the use of MAP estimation for

demodulation was first investigated in the early 1950's [19] and

much has been written about it in the literature since [20]-[23],

[24, chap. 5], [25]-[28], [29, chap 11], [30]-[36]. This interest in the

literature for MAP estimation was the final reason that lead to the

selection of the MAP estimation loop design over the Leclert and

Vandamme variation. The MAP estimation loop is relatively easy

to model and construct in an MPSK environment. It is very similar

to the modified Costas loop employed at the WSGT (in fact at high-

SNR's they are mathematically equivalent), and there is a large

enough source of literature research to verify that the models

developed and tested, and the hardware constructed, were done

properly. Yuen, at The Jet Propulsion Laboratory, [37, chap 5] and

Hinecli and Lindsey [35] have both published data related to the

jitter that proved useful in verifying the results of this study for

BPSK and QPSK and thus allowed the extensions to 8PSK and

16PSK to be considered valid.

One restriction was placed on the MAP estimation loop to

simplify its modelling and to make the data from the study more

useful to NASA at the WSGT. The MAP estimation technique uses

an algorithm that provides an estimate of the phase of the
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received signal. This algorithm is mathematically complicated and

involves the use of hyperbolic trigonometric functions. Before the

advent of digital signal processing, implementing this algorithm

with analog circuitry would have required a prohibitive amount of

electronics. However, if it is assumed the received signal exists in

a high-SNR environment then the MAP estimation algorithm

reduces to an equation that is easily implemented. Further the

analysis of the loop is significantly simplified as well. A similar

reduction in complexity occurs if a low SNR environment is

assumed. However, it is the high-SNR approximation that was

particularly attractive to this study. The modified Costas loop used

at the WSGT is equivalent to the QPSK Costas loop with hard

limiters and thus equivalent to the high-SNR approximation of the

MAP estimation loop. Further the above mentioned published

results on BPSK and Q PSK carrier phase jitter are applicable to a

comparison with the original MAP estimation loop only at high-

SNR's. If a feedback loop that employs the high-SNR

approximation to the MAP estimation loop is used, the results are

completely comparable. Insofar as presenting these results to

NASA was concerned it is possible to inform them what they

should expect in terms of carrier phase jitter if they continue to

use the same type of receiver design for 8PSK and 16PSK.

Having concluded the selection process and chosen a

receiver design that utilizes the high-SNR approximation to the

MAP estimation of carrier phase, it was possible to begin the

15



analysis of carrier phase jitter. The analysis begins with

understanding jitter and what it is, specifically, in feedback loops.

To accomplish this one of the most basic of feedback loops, the

phaselock loop, can be used. The next chapter of this dissertation

presents, as background, a brief discussion of the basic phaselock

loop: how it works and how its jitter can be analyzed. Chapter 3

presents the MAP estimation loop as a phaselock loop for the

carrier recovery of PSK DSB-SC signals. The approximation for

high-SNR is described as well. In Chapter 4 the high-SNR MAP

estimation loop is reduced to a baseband model to simplify

analysis and simulation. It is here that the equation that describes

carrier phase jitter in the high-SNR approximation loop is

presented. Although this equation has been previously solved

analytically for BPSK and OPSK it is shown that for 8PSK and

16PSK an analytical solution for several of the components of the

jitter do not exist and another approach is necessary. In the next

chapter (Chapter 4) numerical solutions are obtained for the

components for 8PSK and 16PSK. The accuracy of the numerical

techniques is verifyed using the BPSK and O PSK analytic solutions.

The 8PSK and 16PSK data could then be tentatively assumed to be

correct. Through the use of simulation techniques and a laboratory

hardware design for the high-SNR approximation loop the

numerical data could be verified more assuredly. All of the results

for carrier phase jitter are presented together in Chapter 6.
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As the reader progresses several other important factors

and characteristics will come to light as well. For example the loop

noise bandwidth exhibits some interesting phenomena that are

not previously discussed in the literature and are of great value to

the MPSK receiver designer. This bandwidth changes significantly

with SNR, narrowing as the SNR drops. It is attributable to the

dropping phase detector gain as the SNR decreases. Smaller design

loop damping factors can minimize this effect. Further, as the SNR

decreases, a threshold region is reached where the trade-off for

carrier phase variance that exists between SNR and loop

bandwidth is no longer linear. In this region, if it is desired to

maintain a certain level of jitter while dropping the SNR by 3

decibels (dB), it is not possible to merely narrow the loop

bandwidth by 3 dB. The loop bandwidth would require

significantly more reduction to maintain the same level of jitter at

half the SNR. This nonlinear exchange does not exist at higher

SNR's where maintaining the same amount of jitter while dropping

the SNR 3 dB can be achieved by narrowing the loop bandwidth 3

dB.

Another interesting, and alarming, characteristic that was

revealed in the study of the 8PSK and 16PSK carrier tracking

loops concerns the minimum SNR that will maintain carrier lock in

the receiver. As will be shown, the carrier phase variance is large

for 8PSK and 16PSK at low SNR's that would be considered

operational for BPSK and O_PSK. At these SNR's 8PSK and 16PSK
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show difficulty in maintaining phaselock. While this data was not

obtained through the mathematical use of acquistion models, it

was observed in both the simulators and the hardware at similar

SNR's.

All of these results will be presented in the subsequent

chapters where appropriate and summarized with the jitter data

in the results chapter (Chapter 6). Chapter 7 is the conclusions

chapter in which results are discussed and suggestions offered for

what to do next, now that the MSPK jitter has been quantified.

Following the conclusions, there are several appendices. Appendix

A presents the Leclert and Vandamme simulation comparison

with the high-SNR approximation to the MAP estimation loop.

Appendices B and C conain the optimum MAP estimator

derivations for 8PSK and 16PSK. The data for two of the

components of phase error variance are in the next two

Appendices. Appendix D contains the equivalent noise variance

data and Appendix E contains the phase detector gain data. The

variance of the phase error data is tabulated in three Appendices.

Appendix F has the theoretical results for BPSK and O_PSK as well

as the numerical results for 8PSK and 16PSK. The simulation

results are in Appendix G and the hardware results are in

Appendix H.
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Chapter 2

THE PHASELOCK LOOP

"Here and elsewhere we shall not obtain the best

insight into things until we actually see them growing

from the beginning ..."

Aristotle

philosopher, 384 - 322 B. C.

2.1 The Basic Phaselock Loop

Investigating the MAP estimation loop carrier phase jitter

requires a model of the loop's steady state operation. The jitter

that it is desired to measure occurs when the loop has acquired

and is locked. To build the mathematical model from which the

jitter can be extracted, and to extract the jitter itself, several

mathematical procedures must be performed. To understand

these procedures and their significance it is prudent to discuss

first their purpose in the most basic of feedback synchronizers:

the phaselock loop.

The in-depth analysis of PLUs is available in many sources

[24][29] [38][39]. The discussion presented here is meant only to

cover those procedures that are required to understand carrier

phase jitter and how it can be evaluated. The basic PLL is used to
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phaselock two sinusoidal signals that are 90° apart in phase. The

quadrature relationship is necessary when a multiplier type phase

detector (the most common for PLL's) is used. The first of the two

sinusoidal signals, the received signal, has an unknown phase

component and is denoted

r(t) = 2_f_ sin((.0ct + Oi(t)). (2-1)

The second signal is the sinusoid generated in the receiver

v(t) = _/2-Av coS(Oct + Oo(t)). (2-2)

The constant amplitude coefficients are chosen for convenience.

Note that the phase arguments, O_(t) and Oo(t), are considered to

have spectrums significantly below their common carrier

frequency of o c, i.e., they are varying slowly [39, pg. 21]. For the

locally generated signal to phaselock to, or track, the received

signal, information regarding which signal is lagging and which

signal is leading is required. An error signal which conveys this

information and provides equal amounts of absolute error,

whether a lead or lag condition exists, can be achieved with a

device that yields an odd function of the phase difference

between the signals. The device that provides the error signal in a

PLL is called a phase detector. The multiplier-type phase detector

multiplies the two sinusoids together and lowpass filters the
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product to remove the double frequency term. The output from

such a device with inputs (2-1) and (2-2) and a gain of Ka (which

has dimensions of volts -1 ) is the odd function error signal

e(t) = Ka_rA_sin(Oi(t )- Oo(t)). (2-3)

Besides the phase detector, two other basic components are also

part of the PLL. They are the linear loop filter and the voltage

controlled oscillator (VCO). All three components are shown in the

PLL of Figure 2-1. The function of the loop filter varys with the

application of the PLL but in general its output can be represented

by convolving its impulse response, f(t), with its input (2-3) as

x(t) = Sf(t- &)Kd _/-PTAv sin(0i(_,)- Oo(2))d_,. (2-4)

r(t) = 2_r sin(Oct+0i(t))
Phase

Detector

v(t) = _f2A v cos(Oct+0o(t))

e(t) [ LoopFilter

VCO ]=

x(t)

Figure 2-1. The phaselock loop.

21



The VCO is a unique device in that its output is a sinusoid

whose frequency varies in proportion to the voltage of its input

signal. When the VCO's input is zero its output has a constant

frequency coc. When the VCO's input isx(t), the output of the loop

filter, its output frequency, will be

CO'(t) = (0c + KoX(t ) . (2-5)

Note that o)'(t) is thus the instanteous frequency of the locally

generated sinusoidal signal since it is the VCO's output that

provides the reference sinusoid in Figure 2-1. Since the

instantaneous frequency and overall phase of the reference

sinusoid are related by the expression

dO°(t)-o'(t) (2-6)
dt

and since the overall phase of the reference in (2-2) is

Oo(t)= COct+ Oo(t) (2-7)

the deviation of the VCO from coc, namely Kox(t), can be expressed

in terms of the phase component of the reference sinusoid, Oo(t).

Using (2-5)-(2-7), this relationship is

dO°(t)-Kox(t ). (2-8)
dt
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Combining (2-3), (2-4), and (2-8) it is possible to state the

integro-differential equation that describes the operation of the

PLL as

t

dO o (t) : KoKd_rAv _ f(t- A,)sin( Oi(A )- Oo(A, ))dA (2-9)
dt

o

An extremely important quantity that has not been

mathematically introduced yet and that is needed to further

explore the integro-differential equation of (2-9) is the phase

error

Oe(t)=O,(t)-Oo(t ). (2-10)

This term represents the phase difference between the received

sinusoid and the locally generated sinusoid. Since it is the purpose

of the PLL to track the received signal's phase and to do so does

not necessarily require absolute knowledge of the signal's phase,

it is equivalent to define the function of the PLL as that of

maintaining as small a phase error as possible between the

received and locally generated sinusoids. Introducing the phase

error, O,(t) into (2-9) yields

!

dOe(t) = dOi(t) KoKd_rAvf f(t- A,)sin(Oe(A,))d_,. (2-11)
dt dt

o
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Equation (2-9), or (2-11), lead directly to the baseband (low

frequency) model of Figure 2-2. Note that the VCO is modeled as

an integrator corresponding to the relationship between the VCO

input frequency deviation and its output phase change. This

model is useful for two reasons in particular. It provides direct

access to the phase error and it has eliminated the need to keep

track of the frequency, o c. While the latter reason may seem

insignificant, if this frequency is included when the loop is

simulated (as in a complete time simulation of the loop) valuable

computing resources will be consumed in unnecessarily high

sampling rates. This model demonstrates that it is not necessary

to simulate the loop in such a manner. Rather, a baseband

simulation will suffice.

Loop Filter: f(t)

0i(t) _ Kd _r AvSin(0e(t)) _-- VCO _ft(t-_')e(_')cl_ _

Figure 2-2. The nonlinear baseband model.

.
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This nonlinear model is certainly useful for studying

transient response behavior and acquistion phenomena but its

nonlinear nature makes it unattractive for studying steady-state

characteristics where a linear approximation will suffice and thus

allow the use of some very powerful analysis tools. The carrier

phase jitter we are interested in analyzing can be obtained

through the use of a linear approximation to the model in Figure

2-2. The assumption that must be made to linearize the loop

model is that the phase error is small. This assumption is

predicated by the notion that the loop has acquired and is

tracking the received signal. The loop is in steady state. If the

phase error is small then

,in(e,(t))=e,(t). (2-12)

This approximation provides the necessary change to convert the

nonlinear model of Figure 2-2 into the linear model of Figure 2-3.

Given that the model is now a linear one it is possible to describe

its transfer function. To do so consider the further modified model

of Figure 2-4 where now the Laplace transforms of the loop filter

and the VCO have been introduced. Further, the assumption has

been made that the Laplace transforms of the phase components

of the received signal and the reference signal exist. It is now

possible to construct the transfer function for the loop. While

there are several transfer functions available in this control loop
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the desired one for assisting in the calculation of the carrier phase

jitter is the relationship between the received signal phase, O,(s),

and the VCO output phase, Oo(s), namely

H(s)- O.(s)
O_(s)" (2-13)

Oo(t)

Kd _r AvOe(t) _-_

VCO

Loop Filter: fit)

_;(t-_)e(X)d_ _0

Figure 2-3. The linear baseband model.

Oi(s) _____

Oo(s) l

Kd _r AvOe(s)

VCO

Loop Filter

F(s)

Figure 2-4. The Laplace transformed linear baseband model.
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From Figure 2-4 it is clear that Oo(s) can be expressed as

oo( )= Ko.
$

(2-14)

Using (2-10) and (2-14) to construct the desired transfer function

yields

H(s)= O°(s) _rAvKaKo F(s) _rAvKaKoF(s)

_=l+_f__AvKdK ° SF(s)=s+_rAvKdKoF(s). (2-15)
S

To develop the transfer function further requires that the loop

filter be selected. A commonly used loop filter is one that creates

a second order control loop [38, pg. 9]. Such a loop is

unconditionally stable (A third order loop is not). Further, if the

loop filter is constructed using a perfect integrator the loop can

track out static frequency differences between the received signal

and the locally generated signal (a first order loop cannot). To

achieve a second order control loop that can track out static

frequency differences requires a loop filter transfer function of

F(s)= 1+ a (2-16)
S
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where the constant a is the constant of integration for the loop

filter integrator. Inserting (2-16) into the last part of (2-15) yields

the transfer function

S_rAvKdK o + a_rAvKdK o

H(s) = s2 + S_rAvKaK ° + a_rAvKaKo " (2-17)

If the phase detector gain, VCO gain, and VCO magnitude

coefficient are combined to form a new constant K, the transfer

function becomes

s_rK + a_rK

H(s) : s2 + S_rK + a_rK
(2-18)

where K = KdKo.xf-_. This transfer function now has the form of the

classical second order control loop transfer function

2
s2_'_. + CO.

H(s) = s2 +s2_m. + 2 (2-19)

where ( is the damping factor of the loop and w, is the natural

frequency of the loop. The relationships between these two

classical loop design parameters and the gain termS,_rK and a,

are
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_r K = 2_00 n,

_r 2Ka = O n ,

(2-20)

or conversely

and (2-21 )

ron =_rKa.

Note that throughout this analysis the signal power, Pr, has

appeared. It is an important component of the gain of the loop. If

the signal strength changes or fluctuates during operation, the

loop performance will change.

One last characteristic of the PLL that will be introduced is

its loop noise bandwidth. Practically speaking, the PLL is a

bandpass filter [17, pg. 170]. Its input is a sinusoid in the presence

of channel noise and therefore has a certain SNR associated with it

(assuming some form of predetection filtering). Its output is

(when tracking properly) a sinusoid of exactly the same frequency

with significantly increased SNR. The baseband model from which

the transfer function is derived has a lowpass characteristic, thus

the name baseband. Its noise bandwidth reflects how wide this
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lowpass characteristic is by equating an equivalent ideal

"brickwall" lowpass bandwidth through the use of one of the

integrals [38, pg.30] [39, pg. 124]

_ 1 _H(to)12do = l_H(f)12df"BL 2_H(0) 2 - H(0)I 2 _
(2-22)

It is important to note that the result of calculating the loop

bandwidth with either part of (2-22) is a number expressed in

Hertz. For the second order loop of interest this bandwidth is well

known and is expressed as [38, pg. 31]

(2-23)

using the classical design parameters or as Viterbi presents it [24,

pg. 36]

BL = .I--P-v.rK +a (2-24)
2

when the gain terms are used. It is important to note here that

equations (2-22) - (2-24) all yield the same result, i.e., the

double-sided loop noise bandwidth.
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2.2 The Phaselock Loop With Noise: Calculating Jitter

Having analyzed the PLL and obtained a transfer function

from its linearized model it is now useful to introduce noise into

the PLL and examine how the loop models change. Introducing

noise into the loop will also allow for calculation of the carrier

phase jitter since it is, afterall, noise that causes jitter to occur.

Before proceeding it is reiterated that this simple PLL

presentation is readily available in the literature [24] [29] [38] [39]

and is a compilation of the information available there. Consider

now the composite signal

r(t) = 2X]'_r sin(rgct + Oi(t))+ w(t) (2-25)

where the noise term, w(t), is additive white Gaussian Noise with a

two-sided power spectral density of N° watts/Hz. At the front
2

end of the PLL there is a predetection bandpass filter, centered at

c°-s-_Hz and with a bandwidth of BIF Hz. At the output of this filter
2zr

the composite signal has become

r(t) = 2Xf_r sin(COct + Oi(t))+ n(t) (2-26)

where

n( t ) = a/2n, ( t )cos( COct ) - a/2n 2 ( t )sin( Ogct) (2-27)
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is a narrowband noise process whose power spectrum is shown in

Figure 5a. The noise components ofn(t), namely, nl(t) and n2(t), are

zero-mean, independent, white Gaussian noise processes [29, pg.

28]. Figure 5b shows the baseband power spectrum associated

with both nl(t ) and n2(t ). The power in n(t) is calculated

Pn = 2BIF-_- = BIFNo. (2-28)

Sw(f)

DBIF t-- i¢BIF ]
_ I " I -

-mc me f
2re 2g

Figure 2-5a. The narrowband noise power spectrum.

Sn, (f)=Sn2(f)

II 12
BIF BIF

2 2

f

Figure 2-5b. The baseband noise power spectrum.
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Since the power in the signal is Pr the SNR at the input to the PLL

is

Pr (2-29)
SNR r = NoBI F •

The composite signal at the input to the PLL can now be expressed

r(t) = 2._l_rSin( COct+ Oi(t)) + _/-2n,(t)cos( Ogct)- _n.2(t)sin( Ogct). (2-30)

When this signal is applied to the phase detector along with (2-2),

the VCO signal, the result is the noisey error signal

e(t)= Kd_rAvsin(Oi(t)-Oo(t) )

+ KdAvnl(t)cos(-Oo(t) ) •

- KdAvn2(t)sin(-Oo(t))

(2-31)

Noting that the cosine function is even and the sine is odd (2-31)

becomes

e(t)= Kd_rAvsin(Oi(t)-Oo(t))

+ KaAvnl(t)coS(Oo(t))

+ KdAvn2(t)sin(Oo(t) )

(2-32)

The signal amplitude coefficient, rp-_, is sometimes incorporated

in the noise components of (2-32) so that when the variance of

the phase error is calculated it can be interpreted in terms of the
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SNR at the input to the PLL [38, pp. 26-27][39, pp. 106-107]. This

incorporation is accomplished by the manipulation

e(t): Kd_rA v sin(Oi(t)- O°(t))+ nl(t"_-)c°s(O°(t))+ n2("-_-t)sin(O°(t))] "_/Pr_/Pr

(2-33)

The noise components in the brackets of (2-33) are often referred

to collectively as the equivalent noise of the loop, stated [39, pg.

106]

ne(t ) - nl(t)cos(Oo(t))+n2(t___)sin(Oo(t))"
---'_rr _/Pr

(2-34)

The error signal is thus

e(t) = Kd_rAv[sin(Oi(t ) - Oo(t))+ ne(t)]. (2-35)

The output from the loop filter will now be

t

x(t) = _ f(t- 2.)Kd _/-PTA_[sin (0i(2.)- 0o(2.))+/'/e (_,)]d/_ .

o

(2-36)

Therefore, the integro-differential equation for the loop can be

expressed as
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t

dOe(t)= dOi(t) KoKd_rAvl f(t- _.)[sin(Oe(/q,))+ne(/1,)]d/1,.
dt dt

0

{2-37)

This equation leads to the nonlinear model of Figure 2-6.

Oi(t)-- _ -

%(0

ne

_ Sin(0e(t)) _-_

VCO

K o (u)du _- x(t)

(0

Loop Filter: f(t) ]

I j'7(t-_)e(_.)d_ ]_--]

Figure 2-6. The nonlinear baseband model that incorporates noise.

The next step is to linearize the model and develop its

transfer function. Once this is accomplished the jitter can be

calculated as the variance of the phase error. To calculate the

variance requires that the statistics of the equivalent noise be

stationary. Therefore, before proceeding with the development of

the linear model the statistics of the equivalent noise must be

examined. In (2-34) the equivalent noise is seen to be strictly

dependent on the VCO phase,Oo(t). However, it is noted that the
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loop bandwidth is, in general, much narrower than the bandwidth

of the input noise for carrier tracking loops such as this [24, pg.

31]. Thus the main lobe of the sinc function that is the

autocorrelation function of either of the noise components, nl (t)
1and n2(t), will be narrow, relative to the time r =--. In other

B,

words the loop, which has a lowpass-type response, responds

slowly to changes in the input noise and while the VCO phase is

dependent on noise that occurred on the order of-_-1 seconds ago,
BL

it is not dependent on noise that occurred at the input in the

range of __1 seconds ago. This makes esoteric sense too when it is
B/F

considered that the function of the PLL is to filter out the noise at

its input and thus produce a sinusoid that has less noise, i.e., jitter

associated with it. As for the equivalent noise, it can now be

stated that the VCO phase, in effect, does not vary during the

small time intervals over which the noise is correlated. Then for

the purpose of evaluating the statistics of the equivalent noise it

can be written

ne(t) = nl(t__)cos( Oo ) + n2( _t)sin( 8o )
_/mr 4mr

(2-38)

where 0o is a constant. The autocorrelation function of the

equivalent noise is
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E[ne(t + _')n,(t)] = E

±.l(t +"O.l(t)cos:(Oo)
P,.

÷_,_(t ÷_),_(t)si._(oo)

+lnl(t + T)n2 (t)cos( Oo)sin( OoI
Pr

+_._(t +_)n_(t)sin(Oo)cos(Oo)

(2-39)

Combining like terms and using the linearity property of the

expected value function results in

E[ne(t + "r)ne(t)]= l__(E[n](t + "r)n](t)lcos2(Oo)+ E[nz(t + "r)n2(t)lsin2(Oo)}
er"

+ l---cos(Oo)sin(Oo){E[n,(t + "r)n2(t)] + E[n2(t + r)nl(t)]}
Pr

(2-40)

However, since nl(t ) and n2(t ) are independent and have zero mean

their crosscorrelation functions, E[nl(t + _)n2(t)] or E[n2(t + r)nl(t)]

equate to zero as can be seen for the former crosscorrelation term

E[n,(t + _)n2(t)] = E[nl(t + _)]E[m_.(t)] = 0.
(2-41)

Having equated the crosscorrelation terms of n l(t) and n2(t ) to

zero the autocorrelation function of the equivalent noise becomes
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E[ne(t+ ,)ne(t)]=-_r{E[nl(t+ T)nl(t)]cos2(Oo)+E[n2(t+ ,)n2(t)lsin2(Oo)}.

(2-42)

Since n l(t) and n2(t ) are identically distributed their

autocorrelation functions are equivalent and thus (2-42) reduces

tO

(2-43)

Noting that n l(t), like n 2(t), is stationary, its autocorrelation is thus

a function only of the time difference, z. Therefore, it is possible

to write the autocorrelation of the equivalent noise as

R_e(_ ) _ Rn' (_) (2-44)
Pr

Since the autocorrelation function is the Fourier transform pair of

the power spectral density of ne(t ) it is possible to state

She (f) = Sn' (f) - N° for Ifl -< B'F (2-45)
Pr 2Pr 2

38



Having identified the equivalent noise as a stationary Gaussian

process and having obtained its power spectral density, it is

possible to obtain the variance of the phase error by analyzing the

output power spectral density of the linear loop model in response

to the equivalent noise.

Linearizing the model of Figure 2-6 leads to the model of

Figure 2-7. If the input phase, Oi(t), is held constant and equal to

zero then the output of the linear system, i.e., the VCO phase, will

be due only to the equivalent noise input. The transfer function

from the equivalent noise input to the VCO phase output is seen in

Figure 2-7 to be identical to that of (2-18). For a linear system the

output power spectrum can be obtained using

(1)=IH(1)r-s.. (1). (2-46)

0o(t)

Oe(t )

VCO

x(t)

Loop Filter: f(t) i

_o/(t-_)e(_.)d_ _

Figure 2-7. The linear baseband model that incorporates noise.
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Noting that with Oi(t ) = 0 the phase error is the negative of the VCO

phase and so the output power spectral density of the VCO phase

is also that of the phase error. This is stated

so.(i) -In(y)l2s.. (y). (2-47)

Since the equivalent noise has zero mean and therefore Oe(t ) does,

too, the variance of Oe(t) is its autocorrelation function evaluated

at zero

°oe=Ro,(r)r=o= Oe(f)effrdf = (f)df= H(f)[ (f)df.

-- _'=0 -- --

(2-48)

Next, consider that since the power spectral density of the

equivalent noise, as described by (2-45), has a constant value

over the entire frequency range that [H(s)] is essentially non-zero,

it is possible to express (2-48) as

B1____LF

oge_ No i IH(I)2dr
2Pr BIF

2

(2-49)
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where (2-45) has been used for the power spectral density of the

equivalent noise. Using the definition for the loop noise bandwidth

given in (2-22), and noting that the loop noise bandwidth is much

smaller than the IF bandwidth, the variance of the phase error

can be expressed as

2 NoBL 2

°0e=5-Ur too) •
(2-50)

Since the loop transfer function of (2-18) has unity DC gain the

jitter becomes

2 NoB, (2-51)
tYOe- 2p r

Using the input SNR to the PLL, described by (2-29), the variance

of the phase error of the PLL becomes

1 B L (2-52)2 =
(:roe 2SNR r BIF

A final, useful though intangible quantity that is often considered

in understanding the performance of a PLL is the SNR in the loop.

It is usually described in terms of the variance of the phase error

as

1 = 2SNR r BIF

SNR L = cr2---_ BL

(2-53)
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The quantity is considered intangible because there is no signal

that exists in the loop that exhibits this SNR. Its function is as a

reference for measuring performance and it will be encountered

again in the descriptions of the performance of the high-SNR MAP

loop.

As has been demonstrated jitter in a PLL is represented by

the variance of the phase of the VCO's signal due to noise at the

PLL input. This jitter is dependent on the SNR of the received

signal and on both the IF and loop bandwidth. All of these factors

will appear again, in one form or another, when the jitter in the

high-SNR MAP approximation loop is analyzed. The procedure will

be very similar as well. The linear baseband model for the loop

will be developed and its transfer function used to obtain the

jitter of the VCO's phase due to a noisy input.
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Chapter 3

MAP ESTIMATION DERIVATIONS FOR CARRIER PHASE JITTER

"It is truth very certain that when it is not in our
power to determine what is true, we ought to follow

what is most probable."

Ren_ Descartes

mathematician & philosopher, 1596 - 1650

3.1 Introduction

In a coherent MPSK system we have the transmitted signal

= o,.(t)) (3-1)

of duration T seconds and symbol energy E, where Ore(t) is the

phase shift key modulation. For M = 2, Ore(t) can take on the values

(0, zr). For M > 2 the modulation can take on the values (2m + 1)zr for
M

m = 0,1...(M-1). The channel adds white Gaussian noise (AWGN) to

the signal and shifts the carrier phase by an unknown amount, 0;.

It is considered here that the function of the coherent receiver is

to detect the data in the received PSK signal in the presence of

noise. The received signal (after predetection filtering) is denoted

r(t) = 3J2--_ cos((Oct- Om(t ) + 0 i )+ n(t). (3-2)
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As was done with the PLL of Chapter 2, the noise component, n(t),

will be assumed to be narrowband noise having passed through

the predetection bandpass filter 1 before entering the receiver. For

MPSK, the optimum receiver can be achieved with the use of two

correlators [40, pps. 257-259]. These correlators require a

coherent reference. In order to obtain this reference it is

necessary for the receiver to estimate what the unknown phase

component, Oi, is. There are several criteria that can be used to

achieve the optimum estimate of Oi [24, pg. 126]. However the

estimation technique of interest here is the maximum aposteriori

criterion. This approach involves selecting Oi in such a manner

that the aposteriori probabilty of 0i, given that r(t) was received,

is maximized [26]. The a posteriori probability density of the

phase 0;, given received signal r(t), is denoted P(Oi[R ) .2 It can be

expressed in terms of the channel transition probability density

and the received signal and carrier phase probability densities

using Bayes theorem

p(OilR)= P(RIO')p(Oi) (3-3)
p(I¢)

where p(R]Oi) is the transitional probability density of receiving

the signal R given a carrier signal with phase 0;. We are

1 Note that the bandwidth of the predetection filter is wide compared to the
symbol rate.

2 Note that time designator has been dropped for mathematical
convenience.
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interested in maximizing this quantity to obtain the best estimate

of the carrier phase and will therefore be computing its

derivative. However, before this is done the natural log function is

introduced to separate the terms in (3-3). This will not affect the

derivative since the natural log function is a monotonically

increasing function. Applying the log function results in

ln(p(Oi]R))= ln(p(R]Oi))+ ln(p(Oi))-ln(p(R)) (3-4)

Now (3-4) can be maximized by taking its derivative with respect

to the carrier phase and setting it equal to zero. We add the

further constraint that the phase of the optimum receiver's

coherent reference will equal 0i when the maximum a posteriori

phase estimate is obtained. This will help formulate the estimator

into a control loop.

Noting that the probability of receiving R is not a function of

the carrier phase (3-4) can be written as

Oln(p(OilR)) Oln(p(e[oi)) =o
ao_ o,=Oo= ao_ 4 _ lo,=Oo "

0 i = Oo

(3-5)

Since the carrier phase 0; is uniformly distributed it is possible to

state
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_ I
_e, /o,:Oo _e, i_,=_o=o.

(3-6)

It is now possible to derive the maximum aposteriori phase (MAP)

estimator by using p(RlOi) , the likelihood function.

3,2 MAP Derivation For BPSK

To proceed with obtaining p(nloi) the M=2 case (BPSK) signal

set will be considered first. Once its MAP estimator is obtained the

subsequent estimators for M=4,8, and 16 will be presented. To

compute p(RlOg) begin with the received signal

r(t)= _/-2E coS(Oct_On +Oi)+n(t). (3-7)

The MPSK signal can be expressed in two dimensions using the

orthonormal basis

%(t) - _f_cos(wct)

_Pl(t) = _f_ sin(wc t)

(3-8)

which results in r(t) = r I (t)W 1(t) + r 2 (t)W 2 (t) where
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and

( )dr1=I,-(, cos,o:,
0

(3-9)

r 2 = _r(t sin(COct)dt.
0

Performing the integration for r_ and r 2 yields

r I = "_ cos(O i - 0 m) + n 1 = Sl + nl

rE = --_/E sin(O i -- 0 m) + n 2 = 82 + tl2"

(3-10)

To continue, the likelihood function can be obtained from the

conditional density of R given both the modulation angle 0m and

the carrier phase 0i. Noting that this conditional density can be

expressed in terms of the orthonormal basis components rl and r2

it is expressed

p(RlOi,Om)= p(rllo,,o,,,)p(r2lOi,°m)
(3-11)

The conditonal densities on the right of the equality in (3-11) are

the noise probability densities of n_ and n2 expressed in the
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received signal space with means s I and s2 respectively. The

conditional density of (3-11) can therefore be expressed 3

p(Rjo,,o.)
=_e

(rl-sl)2 (r2-s2)2
2o.2 1 20.2

(3-12)

To obtain the likelihood function the modulation angle random

variable is integrated out of the conditional density in (3-12) as

follows

(3-13)

For BPSK the modulation angle probability density is

1,_(o,.)+_,_(o,.- ,0.P(Om)=-_ (3-14)

Substituting (3-14) into (3-13) and applying the sifting property

of the delta function the likelihood function becomes

lp(Rio,,o_=_).P(R[Oi)=P(R[O.O,,,=O)+-_ (3-15)

3 Note that the noise samples out of the quardrature arm correlators will be

Gaussian and have variance cr2 = N°.
2E
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To insert (3-12) into (3-15 ) the quantities r1 -- $I and r 2 - s2 must

first be analyzed for both values of 0m. For 0m -0

r 1-- s1 = r1-- _ cos(e i - 0) = r 1-- _ cos(e i) (3-16a)

and

r 2 - s2 = r2 + x/-E sin(0i-0) = r 2 + _f-Esin(Oi). (3-16b)

For e m = I/:

r,- s,=r,- _ cos(O,- ,_)=r,+_ cos(O,) (3-17a)

and

r2 - s2 = r 2 + _ sin(O i - lr) = r2 - _ sin(O i ). (3-17b)

Now using (3-16) and (3-17), it is possible to insert (3-12) into (3-

15) and obtain the likelihood function
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p(eloi)_ 1
- 2--_2 '

(rl-_fEcos(ei))2 (r2+'_/-Esin(Oi))2

e 2_2 e 2°r2

2

(rl+_cos(8i ))2 (r2-a/-Esin(Oi))2

e 2a2 e 2rr2

2

(3-18)

Completing the square and combining exponential terms yields

1

p( R Oi ) = 2--_2 '

(r 2 - 2 r1 _ cos( 0 i )+ E cos 2 (0 i )+ r 2 + 2r 2 _ sin( 0i )+ E sin 2 ( Oi ))

e 2a2

2

+

(r 2 + 2r I _ cos( 0i )+ E cos 2 (0 i )+r 2 - 2r 2 _ sin( 0 i )+ E sin 2 ( Oi ))

e 2cr2

(3-19)

By reducing, the conditional density becomes
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p(_O,)--_.

(r 2 +r 2 +E) (-2rl_/-_cos(ei)+2r2._f-_sin(Si))

e 2a2 e 2(_2

2

(r? +r22 +E) (2rla[-Ecos(Oi)-2r2af-Esin(Oi))

e 2°'2 e 2°2

(3-20)

Rewriting the exponents in the form of the hyperbolic cosine

produces

+

(r21 +r 2 +E)[ (2rl4-Ec°s(Oi)-2r2"f-Esin(ei))

2(_-"--_ [e 2a22

e

(2rl _f-Ecos (0 i )-2r 2 ,JEsin(0 i )) ]]

2a 2 ]t2
(3-21)

Inserting the hyperbolic cosine function results in

(r 2 +r 2 +E)

p(R[Oi)= 1 2_2
2_cr-------Te

cosh((2rl-_cos(O0-2r2a/E-sin(_i)).]
t _<'_ J"

(3-22)
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Substituing in rI and r2 from (3-9) the conditional density

becomes

(r?+r_+E)

2xo-------Te
cosh

_[-Ecos(Oi)ir(t)_[--2cos(O)ct)dt

o VT
O-2

ff-Esin(Oi)ir(t)_sin(Ogct)dt
0

O-2

(3-23)

Combining the integrals yields

(r,_+r_+E)
p(ROi) - 1 2a2

2_o- 2 e

I /"x cosh _ r(t)( cos( tact)COS( 0 i ) - sin( tact)Sin( 0 i ))dt
0

(3-24)

Applying a trigonometric identity results in
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p(I_Oi)= 2_2 e 2a2 cosh _r(t)cos(o_ct + Oi)dt . (3-25)

To continue with deriving the MAP estimator in (3-6) the log

likelihood function,

[ 1'ln[ p(R 0i)] = In 2--_e _ cosh Sr(t)coS(Oct + 0i)dt

(3-26)

is used. The MAP estimator is obtained by taking the derivative of

(3-26) with respect to 0;. To compute this derivative we note the

multiplicative property of the logarithm function and the

following application of the chain rule

3{ln[cosh(u)]} = 1 t_[cosh(u)] = sinh(u) a(u) = tanh(u) a(u)
030i cosh(u) c90i cosh(u) t_O i aO i

(3-27)

Taking the derivative of (3-26) results in
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aOi a_

2o-2

-tanh f r(t)cos(rOct + Oi)d t × r(t)sin(ogct + Oi)dt

[°0

(3-28)

Next, note that the quantity r2 + r22, the square of the magnitude of

the received signal, is not a function of Oi and therefore the first

term of the sum in (3-28) equates to zero. To complete the MAP

estimator derivation set the right side of (3-28) equal to zero and

insert the necessary condition for the optimum estimator

mentioned in (3-6) regarding the control of the receiver reference

(i.e., 0i = 0o). The resulting MAP estimator can be used in a control

loop where a loop filter and voltage controlled oscillator can be

used to drive the MAP estimator equation, or more appropriately

the error signal, to zero [26]. To conclude, the BPSK MAP estimator

equation is [27]

T

x fr(t)sin(roct+Oo)dt=O. (3-29)
0
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When it is employed in a control loop to drive an error signal to

zero the result is the loop of Figure 3-1.

r(t) =ff'_ cos(COct_Om(t)+Oi)+n(t) ff'_

t  op!Filter ]

[ __n(°_ct+Oo(t)) [-_

-IJ0

Figure 3-1. The optimum MAP estimator loop for BPSK carrier

tracking.

Historically, the implementation of complicated functions

like the hyperbolic tangent function was a costly procedure in

terms of the large quantity of analog hardware it required. As a

result alternative approximations were considered. In the case of

the hyperbolic tangent function two approximations have been

considered for implementation in the loop of Figure 3-1. The first

is accurate when the function argument is large. In that case the

hyperbolic tangent function may be replaced by a hard limiter.
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This is known as the high-SNR approximation. When the function

argument is small the hyperbolic tangent function can be replaced

by a "through connection" since the function has a linear unity

gain response to small arguments. The loop of interest in this

study is the high-SNR approximation to the MAP estimation

technique and it is shown in Figure 3-2 for BPSK.

r(t) 2=_'_cos(tOct_0m(t)+0i)+n(t )

cos(Oct+0o(t))t'l I0 T

90

• ) .1 _0 T

VCO

Hard Limiter

Loop l"Filter

Figure 3-2. The high SNR approximation loop for BPSK carrier

tracking.

3.3 MAP Derivation For OPSK

To obtain the optimum MAP estimator, and subsequently

the high-SNR approximation for QPSK the derivation presented for
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BPSK must be altered starting with the probability density

function for the modulation angle,p(0m). Once this is done the

likelihood function for O_PSK can be used to arrive at the

appropriate estimator. Therefore to begin, the Q.PSK modulation

angle probability density function is

(3-30)

Once again using the sifting property to integrate out the

modulation from the conditional density of R given both the

modulation angle 0m and the carrier phase 0i results in the

likelihood function

p(RIo )=

+lp(RlOi,Om=___4_)+_p( _Oi-l_1 , Om=_T__)"

(3-31)

To proceed (3-12), the conditional noise probability density, is

inserted into (3-31) for each of the four values of 0_. To do this

the two quantities r1 -s I and r2 -s 2 must first be analyzed for the

four values of Ore.For 0_ = _r
4

,,=r,  os(0,4) (3-32a)

57



and

r 2 --s 2 =r 2 + _rEsin(0i - 43. (3-32b)

For0m 3_
4

r sr _cos(0i_) (3-33a)

and

r2 - s2 = r2 + _/-E sin( Oi - _-_-). (3-33b)

For 0m =-_
4

rls r ,_cos(O+4) (3-34a)

and

r 2 -s 2 =r2+_/-Esin(Oi+4). (3-34b)

3_
For O=-

4
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(034)rl --$1 -- rl - _cOs +
(3-35a)

and

r2 -- s 2 = r2 + _f-E sin( Oi + 3--_).
(3-35b)

Now using (3-32) - (3-35) it is possible to substitute (3-12) into

(3-31) and doing so yields

1

p(RIo,)--2--Gd

(,',-_co+',-'-4/)_ (,'2-,-_sin(0,"-4)l2
2o.2 2O-2

e e

4

+

+

+

(,,_,_cos(o,-,-_))2 Ir2-,-,_s+,"-_ll2
2O.2 2O .2

e e

4

/r,-,_o+,-_)l"(r'_-'-_+,-4))_
2o.2 2o -2

e e

(r2 +4-E sin(0i-_)) 2

2a2 2o .2
e e

4

(3-36)
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To proceed with minimum confusion, each of the terms in (3-36)

corresponding to a particular modulation angle will be considered

separately. Thus,

(A) 1 20.2 2¢y2= e e (3-37)
8¢rff 2

corresponds to the first term in (3-36). Completing the square of

the exponential arguments in (3-3?) and then combining them

results in

_ 1 2°2 (3-38)
(A)- 87ro.2 e

By combining and separating like terms (3-38) becomes

r?+r2+E-2rl'_-EcoslOi+41+2r2_sinlOi+4)

(A) = 1 2a2 (3-39)
8zrcr--------Te

Applying trigonometric identities to expand the sinusoidal terms

forms
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(A) = 1 20.2
87rty----Te

>(e 2a 2

2r2x/EIsin(Oi)cos(4)+cos(Oi)sin(4)]

xe
20- 2

(3-40)

N°ting that c°s(4)= sin(4) =_--22' (3-40) becomes

r2 +r 2 + E -r 12-¢_[ cos(0 i )-sin( 0 i )]

(A)= 1 20"2 e 202 e
8_rcr----Te

r2 2"vC2E[sin(0i)+cos(0/)]

2(y 2

(3-41)

Inserting the equations for r] and r2, given in (3-9) resolves (3-

41) into

1 20.2

(A) = 87ro.-----Te

Xe
2o .2

T 2 .

Xe
2o- 2

(3-42)
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By combining the integrals and distributing the carrier

components within the single integrand, (3-42) becomes

4+4
1 2a2

/A/=s- e

f2_-_ !r(t)[cos(C-Oct)Cos(Oi )-cos(tOct)sin (0 i )-sin(tOct)Sin(O i )-sin(Oct)Cos (0 i )]dr t "

X e 2o .2

(3-43)

Next, using the trigonometric identities

cos(x)cos(y)- sin(x)sin(y)= cos(x + y)

and
(3-44)

cos(x)sin(y) + sin(x)cos(y)= sin(x + y)

the integral in (3-43) is separated into two new integrals. This

new form is

E T E T

r2+r2+E [2_r(t)c°s(°Jct+Oi)dt] I-2_f_r(t)sin(o)ct+Oi)dt]

1 20.2 + 20.2
(A)- 8/1:O.2 e 20"2 e

(3-45)
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At this point the second term of (3-36), the term corresponding to

a modulation angle Of0m = _, is considered. From (3-36) this

second term is

( rl -_'E cosl Oi +_'_ ) ) 2 ( r2 +_-E sin( Oi +3--_ ) ) 2

1 20"2 e 20"2 (3-46)
(8)= e

Using the same approach as was done for the first term, (3-46) is

first resolved into

1 2o.2

(B) = 8--_2 e

-2rl4-E[cos(Oi)cos(_)-sin(Oi)sin(_)]

xe
20" 2

• 37r . 3_

2r2"_-EIsin(Oi)cos(--4-)+cos(Oi)sln(-_) 1

xe
2o .2

(3-47)

Making of the fact that cos[:-_)use

second term becomes

_/2 and sin(-_) 42 the2 2

r 2 +r 2 +E

l 20.2

(B) - 8/t'O "2 e e

-r 1 2_-E[-cos(0i)-sin(0i)] r 2 2-,f2-E[-sin(0 i )+cos(O i )]

2°.2 e 2°'2

(3-48)
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Inserting the equations for r I and r2, given in (3-9) converts (3-

48) into

r?+r_+E
1 2a2

(8) = 8_cr---_e

-[ !r( t )_f_ cos( tOct )dt ]_-E[-cos( Oi )-sin( Oi )]

xe 2a2 (3-49)

[ !r( t)_f_sin(tOct)dt]'_-E[-sin(Oi)+cos(Oi)]

Xe
2t7 2

Once again combining the integrals and distributing the carrier

component inside the integrand yields

1 20.2

( B}= 8--_ff2 e

{2_F_ !r(t)[-cos(tOct)COS (0 i )-cos(tOct)sin ( Oi )+sin(t.Oct)sin ( Oi )-sin(tOct)COS ( 0 i )]dt} "

xe
2a 2

(3-50)

Using the same trigonometric identities as with the first term and

separating the integral in the same manner yields

,cos,°c,.o ,dtl
20"2 e 2°'2 2°2
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(3-51)

The third term of (3-36) is

(C) = 8-_2 e 2a2 e 20-2 (3-52)

Following the procedure established for the first two terms

1 20.2

(C) - 87rtr2 e

-2ri'q_[cos(Oi)cos(-4)-sin(Oi)sin(-4) ]

Re
20- 2

2r2x/-E[sin(Oi)cos(-4)+cos(Oi)sin(-4) 1

Re
20- 2

(3-53)

/ ,r'_

Here it is noted that cos_-4)

Therefore (3-5 3) becomes

= --4-2 and that sin(4)2 - = _f22 '

1 20-2 e
(C) = 8zrtr-----_e

-r 12a/2-E[cos(0 i)+sin(O i)] r224_[sin(Oi)-cos(0i)]

2°-2 e 2°r2

(3-54)
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Once again inserting the equations forr 1 and r2, given in (3-9)

resolves (3-54) into

1 2_2

(C) - 8zro.z e

-[ !r( t )_ cos( C-Oct)dt ]'q_-E[cos( Oi )+sin( Oi )]

xe 20"2 (3-55)

[!r(t)_sin(_ct)dt] 2"_E[sin(Oi)-cos(Oi)]

X e 2cr2

Once again combining the integrals and distributing the carrier

component inside the integrand yields

(C) - 1 20.2

8 _0,.2 e

{2_-_!r(t)[c_s(_Jct)cos(o_)+c_s(_ct)sin(o_)_sin(wct)sin(o_)+sin(_9ct)c_s(_i)]dt}_

× e 2a 2

(3-56)

Using the same trigonometric identities as with the first two term

and separating the integral in the same manner yields
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1

(c) = 8 rcaz e

E T

2_y2 e 262
2a 2

(3-57)

The final term in (3-36)

(rl-_Cos(0,'-_l) 2 (r2 +'_l-E sin( Oi-_ ) ) 2

1 2o-2 2_ 2
e

(D) = 8trot2 e
(3-58)

resolves into

4+4+E
1 2o-2

( D )= 8--_a2 e

3n . . 31t l
xe

2tr 2

xe
2o- 2

(3-59)

Noting that cos(--_)= sin(--_)4-2 - _ , (3-59) becomes

r? + r 2 + E -r 12-_[-cos(0 i )+sin(0 i )] r 2 2-_[-sin(O i )-cos(0 i )]

1 2o.2 2o- 2 20 -2

(D) - 8_O" 2 e e e

(3-60)

67



Inserting the equations for rl and r2, given in (3-9) resolves (3-

60) into

1 20.2

(D) = 8zro.-----ye

xe 2cr2 (3-61)

[! r(t)_f_ sin(tOct)dt]_/2-E[-sin(Oi)-cos( Oi)]

Re
2t72

Once again by combining the integrals and distributing the carrier

components within the integrand (3-61) becomes

1 20.2

(D) = 8/ra------Te

{2_f-_ !r( t )[-cos( OJct )Cos( Oi )+cos( COct)sin( Oi )+sin( tOct )sin( Oi )+sin( fOct )Cos( Oi )]dt } "

xe
2G 2

(3-62)

As with the previous terms, trigonometric identities are used to

separate the integral in (3-62) into two new integrals. This new

form is
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• 1r? +r22 +E -2 r(t)cos(rOct+O i)dt +2 1r(t)sln(tOct+O i)dt
_L ''0 J

1 2o.2 20.2 2o.2

(D) = 8n.tr----Te e

(3-63)

Having developed the four terms that make up (3-36), the

likelihood function, we now state (3-36) as

r?÷r_÷E
p(RlOi)=8nrcr"-------Tel 2a2

[2_f'_!r(t)cos(tOct+O i )art]

x e 2°'2
+

2o" 2

+ e 2°2 2°'2

I_ T 1E
-2 J r(t)sm(tOct+O i )dt

,,.L o J

-I.- e 2°2 2°2

-2 r(t)_o_(O_ct÷O_)dl2 r(t)_i_(oo_t÷O_)dt

+ e 20"2 20"2

•
(3-64)

The sum in (3-64) is of the exponential form
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f(x,y) = eXe -y + e-Xe -y + eXe y + e-Xe y

where

1 _E T
x = _-'Z-f_l-- Sr(t)coS(Oct + 0 i)dt

o- VT 0

(3-65)

and

y = 4_f-ET_r(t)sin(fOct + Oi )dt
o" VT 0

(3-66)

This sum can be expressed as

f(x, y)-(e x + e -x )(e y + e-Y)= 4cosh(x)cosh(y). (3-67)

Applying this new form of the sum in (3-64) yields

r? +E
p(RlOi ): _ e 2a2

2_a 2

xc°shr4"i-E_r(t)c°s(°Jct+Oi)dt] .LO.VT 0

1 E T

(3-68)

Next the log likelihood function is obtained and can be stated
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_[_(RI0,)]--_ e _°_

(3-69)

As with BPSK, the next step is to take the derivative of (3-69)

with respect to 0i. Once again it is noted that the first term in the

log likelihood function will equate to zero in the derivative. The

derivative of the O_PSK log likelihood function is stated

I
aln(p(RIOi)) = tanh / _--T- f r(t)sin(Oact + Oi)dt x ;r(t)cos(COct + Oi)dt

aoi [ °2 Jo o

]--_-r r
-tanh _r(t)cos(oct + Oi)dt x _r(t)sin(COct + Oi)dt

L _ 0 0

(3-70)

To complete the MAP estimator derivation for O_PSK set the right

side of (3-70) equal to zero and insert the necessary condition for

the optimum estimator mentioned in (3-6) regarding the control

of the receiver reference, i.e., 0_ = 0o, just as wasdone for BPSK.

The resulting MAP estimator is [32]
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tanh f r(t)sin(coet + Oo)dt x r(t)cos(co d

[°_0 !

-tanh Ir(tlcos(COct+Oo)et x r(t)sin(cGt

[°2o !
+Oo)_t=o

(3-71)

When a loop filter and VCO are used in conjuction with the above

control signal the result is the carrier tracking loop of Figure 3-3.

To obtain the high-SNR approximation for QPSK the use of

hardlimiters is once again employed in replacing the hyperbolic

tangent functions. The resulting loop is shown in Figure 3-4.

3.4 MAP Derivation For 8PSK

The rigorous derivation for the MAP estimator for 8PSK is

presented in Appendix B. The optimum MAP estimator for 8PSK is

stated here as

Slxtanh(sly)-clytanh(ClX) +

14 c°sh(c2x)c°sh(s2Y)

cosh(c lx)cosh(sly )

s2x tanh(s2Y ) - c2Y tanh(c2x)

1+ c°sh(ClX)C°sh(slY)

cosh(c2x)cosh(s2Y)

-o (3-72)

where
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7r n" 3n: 3n:

q=cos_-, sl=sin _, c2=cos--_-, s2=sin---_-, (3-73)

cr VT 0
(3-74)

and

1 _E r
Y = __2 `l_ _r(t)sin(r°ct + Oo)dt"

cr VT o
(3-75)

r(t) =_ cos(c%t-0m(t)+0i)+n(t) ff_

•
9-_°s(_ _ VCO ___ Loop

"-'__J sin(°¥t+0o(t)) I I ] ___.._ _'ff

G2

Figure 3-3. The optimum MAP estimator loop for QPSK carrier

tracking.
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Hard Limiter

Figure 3-4. The high SNR approximation loop for QPSK carrier

tracking.

The operation of this estimator uses the scaled outputs from

quadrature arm correlators, as is done for BPSK and QPSK, i.e., (3-

74) and (3-75). Once again the obvious obstacles to

implementation that (3-72) possesses motivates a simplified

solution, namely the high-SNR approximation. To obtain this

approximation hardlimiters are used in place of the hyperbolic

tangents for large arguments. Further, instead of hyperbolic

cosines, the following approximation is used [31]

cosh(A,)=le TM, 141>>0. (3-76)
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This follows since the SNR is incorporated in the calculation of x

and y as a scale factor. The first step in proceeding with the

evaluation of the high-SNR approximation is to examine the

impact of using the hyperbolic cosine approximation of (3-76).

Inserting (3-76) into (3-72) reduces the estimator equation to

slxtanh(slY)-ClYtanh(ClX ) s2xtanh(s2Y)-c2Ytanh(c2 x)-t =0.
eIc2xle[s2yl elqxlelslyl

1+ elqxlelsly I 1-t elc2xlels2yI

(3-77)

To consider the impact of using hardlimiters in place of the

hyperbolic tangents it is noted that the inputs to the hardlimiters

are the scaled correlator output coordinates (scaled by the SNR)

describing where the received 8PSK symbol was detected in the 2

dimensional constellation space. If the received symbol is detected

in the first quadrant both hardlimiters will output a + 1 and the

estimator equation will then reduce to

-- s2x -- c2Y
SIX clY + x

elCZXlelS2yI -_ClX[_T_y I = 0, > 0, y > 0. (3-7 8)

1+-elqxlelsly I 1+ el_axle)2YI

Correspondingly, if the received symbol is in the second quadrant

the hardlimiter corresponding to the inphase correlator will

output a -1 while the quadrature correlator will output a +1. The

resulting estimator is
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SlX + clY s2x + c2Y

elC2XlelSZyI _ ehX]elSly I = O, x < O, y > O. (3-79)

1 + elClXlelsly[ 1 + elc2xlels2y I

It follows that for the third quadrant where x < 0 and y < 0 the

estimator will become

--SlX + clY -s2x + c2Y

elc2xlels2y I 4 elqxlelSly ] = O, x < O, y < 0 (3-80)
1+ 1+

elqXlelSay[ elC2X[elS2y[

and in the fourth quadrant where x > 0 and y < 0 the estimator is

-six - clY --S2X -- c2Y

e-_-2-_lZyl -I =O,x>O,y>O. (3-81)elClXlelSlyl
1+

elc2xlel_2Yl
14

The four estimator equations of (3-78) to (3-81) correspond to

using the high-SNR approximation for each of the four two-

dimensional quadrants. To proceed further each 8PSK sector must

be addressed individually in terms of the received 8PSK symbols.

To accomplish this consider first the received 8PSK sector wherein

x>0, y>0, and x>y. Since this sector is in the first quadrant, the

reduced estimator equation of (3-78) is used. It can be reduced

further to

SIX -- clY s2x - c2Y

etC2X+s2Y_ClX_SlY __j) = O, X > O, y > O.1 + e (clx+sly-c2x-s2y)1 +
(3-82)
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To reduce the denominators of (3-82) consider again that this is a

high-SNR approximation and that the outputs from the correlators

will be approximately the actual transmitted data scaled by a

large factor that incorporates the SNR. For reception in the first

sector this is stated

x -__/cos(8) -- _c 1 (3-83)

and

Y= bt sin(8)=/_sl.
(3-84)

Inserting (3-83) and (3-84) into the denominators of (3-82)

results in

SlX--ClY

1 + e p(c2cl +S2Sl -ClCl -SlSl )

s2x - c2Y
+ =O,x>O,y>O,x>y.

1 + e p(clcl +SlSl -C2Cl -S2Sl )

(3-85)

This reduces to

SIX -- ClY t S2X -- c2y

1 +e _(2c2q-1) 1 +e _(1-2c2q)
=O,x>O,y>O,x>y. (3-86)
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Since 0< 2c2c1< 1 and p is a large number the denominator of the

first term of the sum in (3-86) will reduce to unity and the

denominator of the second term will become very large. The

result will be that the estimator equation of (3-86) will reduce to

SlX-ClY=O,x>O, y>O,x> y. (3-87)

Cross multiplying off the large scale factor in x and y and noting

that in the first sector sl = _ and q = i are the data estimates of

what were transmitted, the estimator equation can be considered

as the error signal in the loop that is to be driven to zero and

expressed as

e(t)= IO.-QI, I >O, Q>O,I > Q (3-88)

where I and Qare the outputs from actual correlators in the

constructed carrier tracking loop and in the case of no noise at all

represent vector coordinates to a point on the unit circle. Note that

(3-88) has been obtained only for the case that the received

symbol is detected in the first sector, i.e., x >0, y >0, and x > y. In

fact, this error signal is the same for any received 8PSK symbol

designated by quadrature correlator outputs I and O_and utilizing

received sector locations to identify the data estimates. To show

this is true the case for the second sector, namely when x > 0, y > 0,

and y > x, is now considered.
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Starting from (3-82) and using the the approximations

x--/_cos(_l = #c2 (3-89)

and '

y=//sin(_) = Fts2
(3-90)

in the denominator forms the estimator

SIX -- ClY

1 + e IJ(c2c2 +s2s2-CLC2-sis2 )

s2x -- c2Y

+el_'qc2+slS2-C2C2-S2S2 _tJ= O, x > O, y > O, y > x.1

(3-90)

This reduces to

S2X -- C2Y
SlX-ClY t " =O,x>O,y>O,y>x. (3-91)

1 + e 1_(1-2clc2) 1 + e #(2clc2-1)

Once again since 0 < 2c2c1< 1 and/_ is a large number the estimator

is reducable, in this case, to

s2x-c2Y=O,x >O, y >O, y > x. (3-92)
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A loop error signal is obtained from this estimator, as before, by

cross multiplying off the large scale factor in x and y and noting

that in the second sector s2 = 0 and c2 = I are the data estimates of

what was transmitted. This error signal is then

e(t)= IO_.-QI, I >O, Q>O, Q> I. (3-99)

where I and O_ are defined as for the first sector. Indeed it is

possible to show that in all of the sectors the same error signal

will result when the high-SNR approximations used above are

assumed. This will now be demonstrated in an abridged fashion

for the remaining six sectors rotating in a counter clockwise

fashion as was started for the first two sectors.

In the third sector where the estimator of (3-?9) is used

and, x < 0, y > 0, and Ix] < y, it is assumed that

x= p cos(_-_) = -p cos(-_) = -/./c2 (3-100)

and

y=/.tsin(_-_)= psin(-_)= _s 2. (3-101)

The estimator of (3-79) then reduces to
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s2x + c2Y

SlX+ClY( ) + eP(2ClC 2-1) =O'x<O'y>O'lxl<Y1 + e p_1-2clc2' 1 +

(3-102)

and finally to

S2X + c2Y = 0, X < 0, y > 0, Ix] < y.
(3-103)

In this sector S 2 = Q and --C 2 = I and so the error signal becomes

e(t)= lO.-Qi, l <0, Q> o, III< Q.
(3-104)

In the fourth sector where the estimator of (3-79) is again

used and, x < o, y > o, and Ixl> y, it is assumed that

x--# cos(_)=-p cos(8) = -/_cl
(3-105)

and

y -/.t sm =/1 sin = #s I •
(3-106)

The estimator of (3-79) then reduces to

S2X+C2Y O,x<O,y>O, IxI>O (3-107)SlX+ clY 4 =

1 + e #(2c2c1-1) 1-t- e #(1-2c2ci)

and finally to
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SlX+ClY= O, x < O, y>O, lx I>y. (3-108)

In this sector S 1 = 0 and -q = _ and so the error signal becomes

e(t)= IO-Q]I,I<O, Q>O, III>Q. (3-109)

In the fifth sector where the estimator of (3-80) is used and,

x < O, y < O, and x < y, it is assumed that

x=/_ cos(_-_) = -/_ cos(8) = -/_c ! (3-110)

and

y---]_sin(_/=/lsin(_)=-/lSl.
(3-111)

The estimator of (3-80) then reduces to

-six + qy -s2x + c2Y
t =O,x<O,y<O,x<y (3-112)

1 + e#(2c2c1-1) 1 + eu(1-2c2cl)

and finally to

-SlX +ClY=O,x <O, y<O,x < y. (3-113)

In this sector -sl = 0 and -q = I and so the error signal becomes
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e(t)= IQ-QI, I <0, Q<O,I < Q. (3-114)

In the sixth sector where the estimator of (3-80) is again

used and, x<0, y<O, and x > y, it is assumed that

x =u cos_T) = -u cos =-vc2
(3-115)

and

y =/./sm_ --_) =/_ sin = -/,/s 2 .

(3-116)

The estimator of (3-80) then reduces to

--s2x + c2Y--SlX+ClY, _ + =O,x<O,y<O,x>y (3-117)
e1_(2C2Cll + e_tl-2c2q) 1+

and finally to

-s2x +c2Y=O,x <O, y <O,x > Y.
(3-118)

In this sector -s2 = Q and -c2 = I and so the error signal becomes

e(t)= IQ-QI, I <0, Q<O, 1 > Q. (3-119)
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In the seventh sector where the estimator of (3-81) is used

and, x>0, y<0, and x<ly ], it is assumed that

X = ]./COS(_-) ----# COS('_/= ]./C 2
(3-120)

and

.y ---/1 sm_---ff--) = p sin = -Us2.
(3-121)

The estimator of (3-81) then reduces to

-- --S2X -- c2Y-slx clY + =O,x>O,y<O,x<ly I (3-122)
l + e taO-2clc2) l + e u(2qc2-1)

and finally to

--S2X -- c2Y = O, X > O, y < O, x < [y[. (3-123)

In this sector --S 2 -----0 and C 2 = I and so the error signal becomes

e(t)= IQ-QI, I >0, Q<O, 1 <IQI. (3-124)

In the eighth sector where the estimator of (3-81) is again

used and, x > 0, y < 0, and x > ]Y[, it is assumed that
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(157r) (8)x --/./cos[Tj = 12cos ---/2c1
(3-125)

and

y --/1 sin[ T) = p sin = -/.tSl •
(3-126)

The estimator of (3-81) then reduces to

- -s2x - c2Y
--six clY + =O,x>O,y<O,x>ly I (3-127)

1 + ev(2qc2-1) 1+ ev0-2q_2)

and finally to

-six - clY = 0, x > 0, y < 0, x > lY[. (3-128)

In this sector -s_ = Q and q = I and so the error signal becomes

e(t)= I_2-QI, I >0, Q<O,I >IQI. (3-129)

Since all of the error signals for all eight sectors are identical the

limitations on I and Q are dropped and the error signal becomes

simply

e(t) = IO.-QI. (3-130)
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This is the error signal that is required for implementing an 8PSK

carrier tracking loop that utilizes the high-SNR approximation to

MAP estimation of carrier phase.

3.5 MAP Derivation For 16PSK

The rigorous derivation for the MAP estimator for 16PSK is

presented in Appendix C. It is stated here as

1

-cl y tanh (cl x ) + six tanh (sly)

cosh(c2x)cosh(s2y) cosh(SlX)Cosh(cly) cosh(s2x)cosh(c2Y )-

cosh(ClX)Cosh(slY) cosh(ClX)Cosh(slY) cosh(ClX)Cosh(slY)

-c2Y tanh (c2x) + s2x tanh(s2y )

cosh(ClX)Cosh(SlY) cosh(SlX)Cosh(clY ) cosh(s2x)cosh(c2Y)]

cosh(c2x)cosh(s2Y ) _-1+ cosh(c2x)cosh(s2Y ) + cosh(c2x)cosh(szy) j

-slytanh(SlX ) + Clxtanh(clY )

cosh(ClX)Cosh(sly) cosh(c2x)cosh(s2y) cosh(s2x)cosh(c2y) ]

cosh(SlX)Cosh(qy ) + cosh(s,x)cosh(qy) + 14 cosh(SlX)Cosh(qy )

-s2Ytanh(s2x ) + c2xtanh(c2y )

cosh(SlX)Cosh(cly ) ] =0cosh(s2x)cosh(c2y ) cosh(s2x)cosh(c2y ) + 1
cosh(ClX)Cosh(slY) cosh(c2x)cosh(s2Y)

cosh(s2x)cosh(c2Y) ! !

(3-131)

This estimator equation has the same form as that of (3-72) for

8PSK. In fact the procedure for analyzing the high-SNR case is

exactly the same. Each of the 16 sectors is considered individually

and the error signals turn out to be identical. The result is that the
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error signal that is required for implementing a 16PSK carrier

tracking loop that utilizes the high-SNR approximation to MAP

estimation of carrier phase is the same as that of 8PSK. In fact the

error signal is exactly the same for any M-ary PSK signal set. In

the case of O PSK a review of the high-SNR carrier tracking loop of

Figure 3-4 shows the error signal of (3-130) is exactly what is

present at the input to the loop filter. For BPSK consider that the

high-SNR loop of Figure 3-2 has the error signal

e(t)=-Q1. (3-132)

Since the estimate of what was transmitted on the quadrature

channel will always equal zero, i.e., Q = 0, for BPSK the error signal

of (3-132) may be generalized to that of (3-130). So it is therefore

possible to conclude that for any M-ary PSK scheme the error

signal in a carrier tracking loop utilizing the high-SNR

approximation to MAP estimation has the error signal of equation

(3-130). This general MPSK high-SNR loop is shown in Figure 3-5.

Note that the decision device that generates the data estimates is

based on determining which sector the received 2 dimensional

symbol was detected in, just as the mathematical discussion of the

high-SNR approximation used.
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r(t) 2=xf_ cos(Oct-0m(t)+0i)+n(t)

f0T I

90c°s(C°ct+0°(t)). t)) ] VCO

[0_ °

Nearest-

neighbor
decision

as to which

phase was
transmitted.

q,

Figure 3-5. The high SNR approximation loop for MPSK carrier

tracking.
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Chapter 4

DERWING THE VARIANCE OF THE PHASE ERROR FOR THE HIGH-

SNR MSPK CARRIER TRACKING LOOP

"Mathematics is an experimental science and
definitions do not come first, but later on."

Oliver Heaviside

physicist & electrician, 1850 - 1925

4.1 Introduction

In the first chapter the need for quantifying the variance of

the phase error in the MPSK carrier tracking loop that uses the

high-SNR approximation to MAP estimation was discussed. In

Chapter 2 the mathematical derivation involved in calculating this

variance, or jitter, for a basic PLL was presented. Further, before

discussing the variance of the more complicated MPSK carrier

tracking loop it was necessary to discuss the loop itself. This was

the purpose of Chapter 3. Now having established a mathematical

foundation of understanding for both the basic idea of jitter and

the tracking loop of interest, it is possible to proceed with the

subject of this chapter: obtaining an equation that describes the

actual variance of the phase error in a high-SNR MPSK carrier

tracking loop. The procedure is straight forward and follows that

of Chapter 2. Starting with the integro-differential equation of the

loop, a linear baseband model is constructed from which an
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appropriate transfer function is obtained. This transfer function is

then used to relate the noise in the loop to the jitter or carrier

phase variance.

4,2 The Variance Of The Phase Error

To begin, consider the high-SNR MPSK carrier tracking loop

presented in Figure 3-5 and shown here again in Figure 4-1 with

one modification in particular. A gain term on the quadrature arm

integrators has been introduced. This term allows for the

normalization of the average energy associated with the I and O_

components. It reflects the physical assumption that the receiver

is utilizing perfect automatic gain control of the received signal.

When the error signal in the loop is discussed shortly, the purpose

of the gain term will become more clear.

The output of the loop filter in Figure 4-1, stated in terms of

its error signal input, e(t), is

' (4-1)
x(t)= j f(t- &)e(Z )d_, .

o

Using (2-8), which describes the VCO output phase in terms of its

input, we can form the expression

t (4-2)
dO°(t) - Ko I f(t - X )e( X )d_,.

dt o
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r(t) =Xf _ cos(tOct-0m(t)+0i)+n(t )

--r _(t)) t _CO _ _il_ p

Nearest-

neighbor
decision '

as to which

phase was
transmitted.

5"

Figure 4-1. The high SNR approximation loop for MPSK carrier

tracking, modified for error signal analysis.

Again describing the difference between the received signal

carrier phase and the VCO phase as the phase error changes (4-2)

into

dOe(t)_dOi(t ) t

dt dt
Kol f(t- 91,)e(A,)d2. (4-3)

The integro-differential equation cannot be described further

without exploring the error signal. So far the error signal has been

presented as a function of the quadrature arm correlator outputs
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and the data estimates. It must now be described in terms of the
phase error.

First, note that the error signal, derived in Chapter 3, carries

with it a time delay of one symbol period associated with the

quadrature arm integrators. Strictly speaking this should be

incorporated in the error signal [29, pg. 65] and doing so for this
loop results in

e(t)=e-PT[,O-QI]
(4-4)

where 19 is the Heaviside operator and T is the symbol period over

which the integration takes place. Insofar as the loop bandwidth

of this type of loop is much less than _, the delay component e-p r

is essentially unity over the frequencies of interest and can be

disregarded [29, pg. 65]. It is of interest to note here that while

this delay does introduce questions as to the performance of the

loop in the nonlinear sense, (acquisition and mean-time between

slip characteristics) it does not impact the steady state

performance analysis of phase jitter when it is neglected.

To relate the quadrature arm outputs, I and Q, to the phase

error consider first the output from each of the quadrature mixers

1 2f_ .
X(t) = _ __7___ cos(0 e - 0 m )+ n(t)cos(oct + Oo )

+ 2 c°s(2(°c/+ 0 e - Orn )

(4-5)
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and

1 2_ET[ • _ n(t)sin(OJct + 0o)Y(O-

1 2_E sin(2C0c t + Oe_ Om)

(4-6)

where 0¢ = Oi- Oo is the phase error and all the phase time

designators have been dropped for convenience. At the output of

each of the integrators the double frequency terms in x(t) and y(t)

will be effectively filtered out. If the gain term is

G=_E

(4-7)

then the output from the integrators will be

1 -" CoS(Oe -- Ore) + NI

(4-8)

and

(4-9)

Q=_sin(Oe-Om)+ NO.

where the noise terms NI and NQ are zero mean Gaussian random

variables. Because the narrowband noise n(t) is necessarily1 it can be

wideband compared with the IF data bandwidth, T'
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considered as a white noise process in so far as the integrators are

concerned. Doing so allows the following calculation of the noise

variance at the output of either integrator

cry, =E G2w(t)cos(oct+Oo)w(u)cos(cocu+Oo)dtdu • (4-10)
L00

Bringing the expected value function inside the double integral to

the noise processes results in

TT

=azffE[w(t)w(,)]cos(coct+Oo)cOs(COc,+Oo)dtd,.(4-11)
00

Noting that for a white Gaussian process

e[w(t)w(u)]=Rww(t,u)=N° ¢5(t-u)
T (4-12)

and then applying the sifting property to the outside integral

converts (4-11) into

T

Cr2N, = G2 N° I cos((.Oct + 0 o )cos( Oct + 0 o )dt.
2 0

(4-13)

Multiplying out the squared cosine term yields

o"21 =G 2 Norfl+lcos(209c t + 20o)dt
2_2 2 "

(4-14)
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and finally

o'_v, =G2 N° T 2 N o T_No. (4-15)
2 2 ET 2 2 2E

Thus the variance of the noise components out of the quadrature

integrators is the reciprocal of twice the symbol energy-to-noise

ratio in the channel. This calculation can be demonstrated

spectrally by considering the response of the integrator to the

narrowband noise in the frequency domain. The integrator's

impulse response (truely, each is an integrate and dump function

with a zero-order-hold designed to latch the dumped value over

the next T second symbol interval) is a flat pulse of duration T

seconds. It follows that the magnitude of its transfer function is a

sinc function, centered at zero, and with first nulls at the symbol

1 Hz. The modulated narrowband noise, which, once again, is
rate,

wide compared to the symbol rate, is flat over the significant

frequencies of interest in the integrator transfer function. It is

therefore possible to consider the noise output of the integrator as

being due to its transfer function's effect on a white noise

spectrum. This allows for accepting the above calculations

resulting in the noise variance of (4-15).

Having identified the components of (4-8) and (4-9) they

can now be considered when substituted into the error signal. The

error signal is now stated as
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e( t ) = cos( Oe - Orn)O + N iO - (-sin( Oe -- Om ) )I -- NQi . (4-16)

Writing the error signal as a control signal with an additive

disturbance identifies this loop's equivalent noise term. Doing so

yields

e(t ) = cos( 0 e - 0 m )Q + sin(0 e - Or,, )I + Ne(t) (4-17)

where

Ne(t)=N,O-Noi (4-18)

is the equivalent noise in this loop. That is, the IF noise appears

inside the loop, in the error signal as noise weighted by the data

decisions. The error signal of (4-17) can be reduced further by

considering that for this loop, wherein the loop bandwidth is much

smaller than the symbol rate, the phase error changes very slowly

compared to a single symbol interval. Since it is essentially

constant over several of these intervals it is appropriate to

consider the average of the control function in analyzing the error

signal. Therefore stating the error signal as its expected value (the

expected value of the equivalent noise is zero) plus a disturbance

results in
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e(t)= E[e(t)]+ Ne(t).
(4-19)

The expected value of the error signal is the effective phase

detector characteristic of the loop [39, pg 116] and is denoted

PD(Oe)= E[e(t)]
(4-20)

Therefore the error signal itself can be stated as

e(t) = PD(O e) + Ne(t).
(4-21)

Recall from Chapter 2 that the output from a multiplier type

phase detector in the absense of noise is essentially the sine of the

phase error. The error signal of (4-17) can be shown to reduce to

exactly the sine of the phase error in the noiseless case if it is

assumed that good data decisions are being made. Consider the

noiseless error signal

e'(t)=cos(O e - 0re)l) + sin(0e --Om)]. (4-22)

The data estimates can be rewritten as I: cos(0m) and O: sin(0m)

where 0_ is the estimate of the transmitted angle. With

trigonometric manipulation (4-22) becomes
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cos(0 /[cos( /sin(0o)-sin(0 /cos(0o)]
+sin/0e/[sin/0otsin( m)+COS/0otcos(0 )]"

(4-23)

Using the I and Odesignators, (4-23) becomes

e'(t)=cos(Oe)[ImQ_m-Qmlm]+sin(Oe)[QmQ_.m + Imlm]. (4-24)

Incorporating the assumption that good data decisions are being

made reduces (4-24) to the expected phase detector characteristic,

namely

e'(t)=sin(Oe). (4-25)

Returning now to the phase detector characteristic of (4-20),

and again noting that the expected value of the additive

equivalent noise is zero, it is possible to describe the phase

detector characteristic as

PD(Oe)= E[e(t)] = E[cos(O e -Om)O+sin(O e --Om)I ]. (4-26)

Again using trigonometric identities it is possible to manipulate

(4-26) and reduce it to

eO(Oe)=E[sin(Oe +Om-Om)].
(4-27)

98



This last form of the phase detector characteristic is exactly the

form that will be needed in the next Chapter when the gain of the

phase detector is calculated.

This analysis of the error signal was begun to obtain a form

that included the phase error directly. The form of interest at this

point is (4-21). Inserting it into (4-7) yields

t

dOe(t) dOi(t) Ko;f(t_A){PD[Oe(t)]+Ne(t)}dA (4-28)
dt dt o

where the time designator for the phase variables has been

reinstated for uniformity. As in Chapter 2 this form of the integro-

differential equation that describes the loops operation leads

directly to a baseband model, in this case shown in Figure 4-2. To

proceed with linearizing the baseband model of the loop it is first

necessary to examine the phase detector characteristic more

closely. It is convenient to express the phase detector

characteristic in the form [39, pg. 269]

PD( Oe) = OCsNRsin( Oe)
(4-29)

where aSN R is the effective gain of the phase detector. It

incorporates the impact of making poor data decisions in such a

manner as to become smaller as more incorrect decisions are

made, i.e., as the SNR goes down. Note that when the SNR is high

and good data decisions are being made this gain term equates to
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unity resulting in a phase detector characteristic that is once again

the sine of the phase error. This gain term manifests itself as the

slope of the phase detector characteristic measured at zero phase

error. Mathematically it is expressed as [39, pg. 269]

(4-30)

Oi(t) __1_ PD(Oe(t))vco

Oo(t)' I,Sot<U,_.l --

e(t)

Loop Filter: f(t) ]

x(t) [ I!(t-_')e(_')d_' _J

Figure 4-2. The nonlinear baseband model.

To linearize the loop it is assumed that the phase error is

small and therefore (4-29) reduces to

PD( Oe ) = asNRO e . (4-31)

The linear baseband model of Figure 4-3 results. Note also that

the employed loop filter is the same as before so that the loop will
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be a second order control loop. From the linear model it is possible

to develop the second order transfer function, just as was done in

Chapter 2. For this loop the combined DC gain is O_sNnKoand the

transfer function that describes the relationship between the

received signal phase and the VCO output phase is

asNRKo (S + a)

H(s) - sZ + OtslvnKo(S+ a) "

(4-32)

N .(t)

_ _CU3NR

Oo(t)
x(t)

VCO

[ olX U, U0

e(t) I

Loop Filter: f(t) [

I f!(t-_,)e(_,)d_, _-J

Figure 4-3. The linear baseband model.

The transfer function of equation (4-32) can be equated to the

classical second order control loop transfer function and its design

parameters through

t , ,2
2_ tOnS + ton

n(_)-: +2_'co'.s+co'.2
(4-33)
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where

(4-34)

and

(4-35)

To proceed with identifying the carrier phase jitter the transfer

function that describes the relationship between the equivalent

noise input and the VCO phase output is needed. From Figure 4-3

this relationship is

Ko(s+a)

Hn(s) = s2 + OCsNRKo(S+ a)

1
=_n(s). (4-36)

O_S NR

To obtain the variance of the phase error the output power

spectral density of the linear loop model is analysed in response

to the equivalent noise. Doing so is once again preceeded by the

notion that the equivalent noise is stationary. In fact, it is

cyclostationary [3 5] with autocorrelation function

(r2 F1 ITlq
RNe(r)= He L --TJ' [zI<T. (4-37)

102



To see that this is true consider that the equivalent noise itself can

be represented as a pulse amplitude modulated waveform with
2

period T. Further, its amplitude has zero mean and variance aNe.

Recalling the approach used in Chapter 2 to describe the

variance of the phase error, the output power spectral density for

the phase error of the loop will be

so.(i) =IM.(I)l2sN.(i). (4-38)

And it follows that the variance can be described as

2 S 2 aN eCroe= nn(f) (f)df.
(4-39)

The power spectral density of the equivalent noise is obtained

from its autocorrelation function (4-37) and is stated

Sly. (f) = a2N. Tsinc2 (fT) •
(4-40)

In the case of the PLL of Chapter two the fact that the IF

bandwidth was large compared to the loop bandwidth allowed for

a simplification in the calculation of the variance, namely that the

power spectral density of the equivalent noise is flat over the

range of lowpass frequencies for which the square of the

magnitude of the loop transfer function is essentially non zero.

The same holds true here. The first null of the sinc-squared
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function of (4-40) is at a much higher frequency than the highest

significant frequency in the square of the magnitude of the loop

transfer function. Therefore the variance of (4-39) can be reduced

to

#

4r f H.(s) aso, = (4-41)
-f'

where f' is an arbitrary frequency slightly greater than the most

significant frequency to be considered in the square of the

magnitude of the loop transfer function. Using the transfer

function relationship of (4-36), the variance becomes

!!H(:)2 2df{_Oe = (4-42)

Using the same reasoning as in Chapter 2 the integral in (4-42) is

equated to the loop bandwidth, BL, and the variance is therefore

a2 a2 e TB L

Oe "- O_2NR (4-43)

And finally, since the symbol period, T, is the reciprocal of the

symbol rate, SR, the variance of the phase error in an MPSK loop

utilizing the high-SNR approximation to MAP estimation may be

stated
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(4-44)

Making any comparisons between this equation and that of the

variance for the basic PLL, namely, (2-52) will be withheld until

after the components of (4-44) are further explored in the next

Chapter.

With the exception of the symbol rate, all of the components

that make up the variance equation of (4-44) vary with SNR.

What is more, how they vary with SNR is dependent on which M-

ary PSK scheme is being used. The first of these, the loop

bandwidth, is directly dependent on the phase detector gain. As a

result the loop bandwidth can become substantially narrower as

the SNR decreases. The phase detector gain itself decreases with

decreasing SNR. The amount it decreases at a particular SNR is

greater as M goes up. The third component, the equivalent noise

variance, increases with decreasing SNR. However, at a particular

SNR, as M is increased, the variance of the equivalent noise can

decrease (only at small SNR's). It never increases with M.

All of these changing components lead to a dynamic and

complex relationship between SNR and the phase error variance.

To proceed further with understanding the variance requires an

indepth analysis of the above mentioned three components. This

is the subject of the next chapter.
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Chapter 5

THE COMPONENTS OF PHASE ERROR VARIANCE

"To talk sense is to talk quantities."

Alfred North Whitehead

mathematician & philosopher, 1861 - 1947

5.1 Introduction

In Chapter 4 the variance of the phase error in the MPSK

carrier tracking loop that uses the high-SNR approximation to

MAP estimation was derived. It is restated here for convenience

as

2

a2e _ OL GNeSRa2NR" (5-1)

The three components of this variance that change with SNR were

also introduced. They are the loop bandwidth, BL, the phase

2
detector gain, aSNR, and the variance of the equivalent noise, aNe"

It is the subject of this Chapter to discuss these three components

in detail. As was mentioned at the end of Chapter 4, each of them

has a dynamic response to changing SNR and to selected

modulation type. Their combined effect on the variance of the

phase error will be presented as results in Chapter 6.
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5.2 The Equivalent Noise Variance

The first component of the phase error variance that will be

discussed is the variance of the equivalent noise. This component

consists of two characteristics as will be demonstrated. The first of

these reflects the presence of channel noise in the IF receiver

front-end. The second relates the impact of making bad data

decisions on the noise in the loop itself. This second characteristic

is particularly intriguing since it manifests itself in such a way as

to slightly lessen the overall variance of the equivalent noise and

therefore the variance of the phase error. To begin the analysis of

the equivalent noise variance recall the equation for the

equivalent noise given in (4-18) restated here as

N,(t)=NtO-Ne?.
(5-2)

In calculating the variance of the equivalent noise it is first noted

that the mean of the equivalent noise is

(5-3)

since the statistics of NtQ and of NOI are identical. The equivalent

noise variance is therefore

CY2Ne -" E[Ne(I) 21 = E[N_ _2 -t" N2IQ 2 - 2NINQIO 1 •

(5-4)
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To proceed further, each modulation type is considered in turn.

For BPSK, (5-4) can be reduced because the squared estimate on

the I channel is always unity and the O_ channel estimate is always

zero. For BPSK the variance becomes

aN e
(5-5)

which is simply the variance of the noise out of the quadrature

arm integrator. Since noise out of each of the integrators has

equivalent statistics, equation (5-5) can be equated to equation

(4-15) and the result is

2 No (5-6)
_ N e -" -_-_ .

For BPSK the variance of the equivalent noise in the loop is exactly

the variance of the noise out of the quadrature arm integrators.

For QPSK the variance of (5-4) is expanded as

(_2Ne = E[Ne(t)21= E[N_i2] + E[N/202] - 2E[NINQIO ].
(5-7)

In the case of QPSK the data estimates on either channel are

independent of their orthogonal noise components. In other

words, I is independent of N o and 0 is independent of N I. This

permits the manipulation of (5-7) wherein
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(5-8)

Since the statitics of Ntl and NQ_2 are equivalent (5-8) becomes

(5-9)

Note once again that the quadrature arm integrator output noise

statistics are equivalent and the result is

_2Ne = E[Ne(t)2]= E[N 2 ]{El- _2]+ E[Q 2]}- 2{E[NtI]} 2. (5-10)

This becomes

(5-11)

Using (4-15) and noting that the vector magnitude of the data

estimates is always unity, the O_PSK equivalent noise variance is

,_,=_[Ne/,_]__No__{_[N,_]}_ (5-12)
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What remains is to calculate E[Nfi]. This is accomplished by

equating the expected value of a function of two random variables

through

(5-13)

where the two probability denisty functions are that of the noise,

1 2_r21

f(NI)= x/_--_CrNI e (5-14)

and that of the transmitted I channel data,

I. (5-15)

To examine the integration of equation (5-13) it is noted thati

can take on two values depending on which of the two possible Im

values were transmitted and depending on whether or not N_

caused an error to occur. The result is that there are four integrals

corresponding to four combinations of possible transmitted data

and possible estimated data that must be examined. This is

expressed by integrating out the transmitted data from (5-13)

resulting in
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[ ] 1_/'2 tf(Nt)dN! -tE Nll - 2 2

T
+ - lf(Nl)dN I

2 2

(5-16)

The first and second integrals correspond to a transmission of

42 while the third and fourth integrals correspond to sending
Ira=T

Im = _/_ In the second integral the estimate has been made
2

incorrectly because the noise is sufficiently large in the negative

direction. In the fourth integral the estimate has been made

incorrectly because the noise is sufficiently large in the positive

direction. By inserting (5-14) into (5-16) and performing the

integration the expected value of the product of the I channel

noise and estimate becomes

@4-- 4o , (5-17)

Returning this result to (5-12), which describes the O PSK

equivalent noise variance yields
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_2 =No_2 Cr_ e 4a21 g o

Ne 2 E [ _/ lC = -_ ' - 2e-_° "
(5-18)

Figure 5-1 shows the equivalent noise variance for BPSK and O_PSK

using (5-6) and (5-18). Note that at low SNR's the variance for

QPSK is less than that of BPSK. This effect is known as "self noise"

and in decision directed loops such as this it refers to the effect

that making bad decisions (which occur more frequently at low

SNR's) has on the noise inside the loop. This will be demonstrated

graphically when 8 and 16PSK self noise are discussed. For QPSK

though, the self noise is prevalent only at SNR's below about 5 dB.

In fact, at higher SNR's the BPSK solution for equivalent noise

variance can be used as an approximation.

To calculate the equivalent noise variance for 8 and 16PSK it

is first determined that no reduction in the complexity of (5-4) is

possible, as was done with BPSK and QPSK. The data estimates and

corresponding orthogonal noise components are interdependent.

For example, a noise sample on the I channel could move the

received data point vector across a sector boundry and cause an

error on the estimate of what was transmitted on the Qchannel.

This is shown for the 8PSK constellation in Figure 5-2. The hash

marks on the vertical axis denote the possible transmitted

quadrature channel data.
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SNR (E/N o) in dB

Figure 5-1. BPSK and O PSK equivalent noise variance.

Q , Estimate Of What Was Transmitted

_ Noise On I Channel

"_" i__" _ili _ _ I__ iii___tlr flint nel

"_'_ / _x "_... Transml

111 _ Received Vector Point

Figure 5-2. The 8PSK constellation with noisy received component.

113



Therefore to calculate the variance of the equivalent noise

for 8PSK and 16PSK a direct approach was utilized. The variance

was numerically calculated by evaluating the triple integral

(5-19)

where

(5-20)

is the square of the equivalent noise and f(NI,N e, 0,,) is the joint

density over the noise components and the discrete transmitted

modulation angle. Each of the noise components and the

transmitted modulation angle are all independent of each other

and thus the joint density may be expressed as

:(N,.N..:(N,):(:':.):fOm). (5-21)

If 8PSK modulation is assumed and it is assumed that there are

equally likely transmitted symbols, then integrating out the

modulation from (5-19) results in
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{TNe = g NI,NQ,Om=i f(Nt)f dNIdNQ. (5-22)

Since the double integral of (5-22) will yield the same result for

each of the eight modulation points it is possible to reduce (5-22)

to

' 7_Ne =
(5-23)

where the zero-angle transmitted modulation point has been

assumed for mathematical convenience. To proceed a change of

variables is performed to move the joint Gaussian probability

"mountain" out to the modulation point corresponding to 0m = 0.

This allows the double integral to be performed over sectors that

correspond to the decision regions for the data estimator.1 The

new double integral is

CrNe2= _g(x--1,y,O m = O)f(y)f(x-- 1)dydx (5-24)

Otl j

where the point (x = 1,y = 0) corresponds to the modulation point on

the positive I axis. The limits of integration correspond to the

values of x and y that are in each of the eight decision regions. To

1The thick dashed lines and the axes in Figure 5.2 form the boundries of the

decision regions.
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proceed with performing this numerical integration it is helpful to

view the components of the integrand as 3-dimensional surfaces.

Figure 5-3 shows the function g(x- 1,y,O m = 0), the square of the

equivalent noise, for 8PSK. For comparison, the same function is

plotted for BPSK, O_PSK, and 16PSK in Figures 5-4, 5-5, and 5-6,

respectively. For an SNR of 10 dB the joint Gaussian probability

mountain, centered at the (x = 1,y = 0) modulation point, is shown in

Figure 5-7. The entire integrand of the double integral is shown

for 8PSK at an SNR of 10 dB in Figure 5-8. The variance of the

equivalent noise is the volume under the integrand surface. What

the 3-dimensional view contributes here is assistance in setting

the limits of integration for the numerical calculation of (5-24).

Before the use of surface analysis was employed it was not fully

understood just how localized the surface prominences are. To test

the technique the numerical approach was first applied to O_PSK.

This numerical data are shown in Figure 5-1. The source code for

all M-ary PSK equivalent noise variance calculations and the data

are given in Appendix D. Having verified the functionality of the

approach for O_PSK the technique was applied to 8PSK and 16PSK.

The resulting data are shown in Figure 5-9 along with the closed

form solutions to BPSK and O_PSK. Note that at low SNR's the

variance drops with increasing M. To understand how this is

possible consider again the surface plots of the square of the

equivalent noise. For BPSK this surface is a parabolic one,

increasing with both positive and negative Y. For the other three,
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the surface is discontinuous and, in particular, has channelized

minima in regions that correspond to the increasing parabolic

surface of BPSK. As M increases the number of minima increases

and thus the volume under the square of the equivalent noise

surface decreases. Correspondingly, the variance itself decreases.

At high-SNR's, when the Gaussian probababilty mountain is very

narrow, only the continuous, parabolic region (for all M) that

contains the modulation point(x = 1,y = 0) will provide significant

contributions to the variance calculation. Thus, all of the MPSK

equivalent noise variance calculations converge at high-SNR's.

Figure 5-3. The 8PSK squared equivalent noise.
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Figure 5-4. The BPSK squared equivalent noise.

X

Figure 5-5. The O PSK squared equivalent noise.
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Figure 5,6. The 16PSK squared equivalent noise.

Y

X

Figure 5-7. The joint Gaussian probability mountain at 10 dB SNR.
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Figure 5-8. The 8PSK equivalent noise integrand at 10 dB SNR.
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Figure 5-9. MPSK equivalent noise variance.
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5.3 The Gain Of The Phase Detector

The next component of interest in the calculation of the

variance of the phase error is the gain associated with the phase

detector. In Chapter 4 the gain was shown to be a function of SNR

through (4-27). Further, it was presented as the slope of the phase

detector characteristic, measured at a phase error of zero, as

shown in (4-30). Together these representations will allow the

computation of the gain of the phase detector for 8PSK and 16PSK.

As with the variance of the equivalent noise for 8PSK and 16PSK,

the interdependence between the data estimate on the I channel

with the noise on the O_channel and the interdependence between

the data estimate on the O channel with the noise on the I channel

prohibit the closed form solution of the phase detector gain.

Before discussing the solutions for 8PSK and 16PSK, the solutions

for BPSK and OPSK will be presented.

Using (4-26) and (4-30) the phase detector gain is stated as

O_SN R -"
_E[cos(O e - Om )a + sin(O e - 0 m ); ]1

¢90e "lee =0"

(5-25)

Expanding the trigonometric functions yields
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aSN R =

_EV{CoS(Oe)COS(Om)+Sin(Oe)Sin(Om)}O

[+{sin(Oe)COS(Om)-coS(Oe)Sin(Om)}I

OOe

=0

(5-26)

Writing the trigonometric functions of the transmitted modulation

angle as I and Q data components and combining like terms forms

cg{c°s(Oe)E[ImQ-IQm]+sin(Oe)E[Qm(2+ lml]} . (5-27)

O_SN R = _0 e

0e =0

Distributing the derivative and applying its multiplicative

property results in

O_SN R = E[ lmO- ia m ] _COS(0e)['
°30e 0e =0

+ E[Qm(2+ ImI] cgsin(Oe)

_0e 0 e =0

+coS(Oe)_E[ Im(2- _am ]

e 0e =0

+sin(Oe)CgE[Qm O+ lml]

OOe
0 e =0

(5-28)

The first and fourth terms of (5-28) equate to zero leaving
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(5-29)

For BPSK, all but the last term of (5-29) equate to zero because

the data sent on the Q channel and the estimate of what was sent

on the O channel are both always zero. The last term is the

expected value of a function of random variables and is stated

E[ImI]= I lmIf( Im)f(Nl)dNldlm" (5-30)
--oo --o¢_

It is noted that the phase error has been set to zero before

beginning the integration. Expressing the estimate of the I channel

data as a function of the noise on the I channel and the particular

transmitted data on the I channel makes it possible to integrate

out the data and form

17
E[lml]=-_ g(N,,I_ = 1)f(Nt)dN,-'_ g(Nt,Im =-l)f(N,)dN,.

(5-31)
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Now, considering the two possible values for the data estimate

transforms (5-31) into

E[ImI]= f(Nl)dNl-_ ;f(N1)dN,+-_ ;f(N,)dN,- f(N,)dN,.
-- --_o --oo

(5-32)

Using (5-14) and the "Q_' function, which is related to the normal

probability function and defined by

x 2

Y

(5-33)

it is possible to express (5-32) as

(5-34)

This reduces to

O -1 Q 1 (5-35)

Again stating that for BPSK, (5-35) is the only non-zero term in

the expanded equation for the phase detector gain, (5-29), and
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noting the "Q_' function's relationship to the standard "eft"

function, namely

(5-36)

it is possible to state

OISNRBPSK

(5-37)

Inserting the expression for the variance of the I channel noise

yields [37, pg. 91]

aSNRsesr = erf(_o ). (5-38)

For QPSK, all of the terms of (5-29) are non-zero, Further, the last

two terms are equivalent and can be stated

(5-39)

Following the same procedure as for BPSK, next the modulation is

integrated out yielding
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=[,o_]-2j.=_,.,==fIN,>,,

1__7=(",,'m: _/I(",)<",
(5-40)

Now, considering the two possible values for the data estimate

transforms (5-40) into

1 -_/_ _

Etlm_]_rl 2 2 2

4$

- _f(Nt)dN !f(Ns)dNt+2 2 2

2

4_

1-'xl2-xi2 2 1-'q'2 _ jS(NI)dN I42 2 2 If(Nl)dNl+2 2 2

2

(5-41)

Once again applying the "0_' function, the result is

El/maT] =1 Q/-'x/2/ 1 Q/ _ /+ 1 Q/-x/2 / 1 Q/ -,_/2 1.
7 t,2aN----7)-7t.2o-=_)7 t,2aN--7)-7 t.2o-A,,)

(5-42)

This can be reduced to

e[t,,,#]=_- t.2°N,.)
(5-43)

or using the "eft" function with the I channel noise variance

substituted in as
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/ (5-44)

To complete the phase detector gain analysis for Q PSK requires

that the first two terms of (5-29) be examined. The procedure for

calculating either one is similar. It is noted, however, that the

phase error cannot be set to zero until after the derivative is

evaluted. Therefore to proceed, consider the expected value

function in the first term of (5-29), namely

EbmOl=777,o_/,o/;/<2o/_'(_'Q)<'NO<'Qo<"r_.
--c_o --_ --{x}

(5-45)

Next, integrate out the modulation and express the estimate of the

{3_channel data as a function of the noise and modulation data to

form

.[,oo]:7___S.-_,,::T,_o: _{"_)_"_

422 2 g Tf_m-- ,

+ ---_,Qm = f

+

1 1-"/2 <_I (No.22 2 _.g
}I_,_ _

l (.,,o22 g -

(5-46)
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To continue the phase error, 0e, must be considered. As was done

previously, it is assumed that the phase error is small. Next

consider that a phase error will rotate the received constellation

in the decision space. Depending on whether the phase error is

positive or negative and depending on what modulation data is

transmitted the rotating effect can help or hinder the Q channel

data decision process. When the rotation assists the Q channel

decision, by moving the constellation point away from the I

channel axis, it moves the point closer to the Q channel axis and

thus hinders the I channel decision.

In terms of integrating NO, this phase error affects the

boundry value in the decision space beyond whiChNQ will cause

an error. If the phase error has moved the constellation point

away from the I channel axis, i.e., the Q channel decision boundry,

a greater value of N o is required to cause an error in the Q

channel estimate. A positive phase error will cause a transmitted

symbol in the first or third quadrant to appear closer to the I

channel axis in the decision space. This is shown in Figure 5-10. In

the second and fourth quadrants a positive phase error will mean

the symbol appears farther from the I channel axis.

Therefore, in the first quadrant the O_channel noise needs to

be

(5-47)
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to cause an error in choosing Q. Correspondingly in the third

quadrant an error will occur if

(5-48)

If in the second quadrant the noise is

NO<-sin(_-Oe)=-sin(4 + 0e /
(5-49)

or in the fourth quadrant

NQ>-sin(- 4 - Oe)= sinl4 + Oe)

(5-5o)

an error will occur. These are the four noise boundries required to

expand (5-46) taking into account the phase error. When they are

applied to (5-46) the result is
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[o]11_ _ f:(N.).N.+Elm =22 2 2
-4_-o.)

"_ f(NQ dNQ -_

+ _ f( No)dNQ4
22 2 2

+
222 2

sin(4+O_ )

1 1 _ __/_-

222 2
ff(NQ )dNQ

--oo

11--_--_/_

22 2 2

_si.(_+o.)
[.f(NQ)dNQ

--oo

22 2 2 sin(4_Oe )

(5-51)

cos(135°-0e). _ # cos(45°-0e )

0e _ / Transmitted Vector Point

sin(135O_0e ) _ I_ 1_/_ 0e

__---"__[_ sin(45°_0e)

Figure 5-10. The Q PSK constellation with and without phase error.
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Applying the "0]' function yields

,Q/ <4 1 [sin( "_'-Oe

, [__i,,(¼+o,)] , psin(_+Oe]]°---

, r-sin¢-"-0,)]<1Q[sinC4-Oe]]+-a/ k4 ....
8 I _Nt _NI

1Q?sin(4+Oe " rsin(-_ + 0ell

(5-52)

Reducing yields

I [-sinI-_-Oe)] I [sin(-_-Oe)]

I [--_in(4+Oe)l I [sin(4+O')]"

(5-53)

After combining complementary "0]' functions (5-53) becomes
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(5-54)

and finally

• Fsin(_+0e!]_zJsin/4- ]
E[imOl = ia] ,4 Oe I (5-55)

By a similar approach for the second term of (5-29) its

expected value function becomes

.@mi]=±Q/ ___4_ '
2 [ (:rut -2Q

(5-56)

Referring to (5-29) the QPSK phase detector gain is now stated
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I1Isin(4+Oe)ll

IZSNRQpS K -- _0 e

_gJ l QIsin(4-Oe)]l

c90e

0 e =0

Oe =0

30e

+
030e

0 e =0

0 e =0

(5-57)

By reducing, (5-57) becomes
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O_SNRQps K = 2

rsin +0e/llQ[ \4

,00 e

,e=O

-2
[2 [

OOe

=0

(5-58)

To further reduce the partial derivatives in (5-5 8) it is necessary

to take the derivative of an integral through the use of the

relation

__if(x,y)d x q C) ,y. Oq _p= I--_[:(x,y)]dx + f(q )-_- f(P,y) o3y •
--p p--

(5-59)

Since the "Q_' function integrand in (5-58) is not a function of the

phase error, the first term in (5-59) will equate to zero. Further,

since the upper limit on both "02' function integrals is infinity, the

second term of (5-59) will equate to zero. The result is that (5-58)

becomes
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I[XSNRQps K =

 isin/4
2 _21 (_NI

,90e

Jsin/40el1
sin2 (4-0e)_ _-N-?

2 _NI

,90e

0 e =0

,0 e =0 (5-60)

This reduces to

135



O[,SNRQps K =

[- sin2/4+0 e

1 2cr2 l

- 2--_=-=e
(_N 1

1

(XN 1

,e=O

,=0 (5-61)

Evaluating (5-61) at a phase error of zero yields

OtSNRQpsK = I_ 2Q(J_2 ] 1 40"2

_,2ffNl ) 2 _U I e ul

1 4a2
e NI

(5-62)

and finally

=l-2Of l 1
_,2_N, ) _5/_NI e

(5-63)
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Using the "erf" function and inserting the I channel noise variance

(5-63) can also be stated [35]

_SNRQPSK

E

E 2 E e -
=erfl_2_ol___o 21%.

(5-64)

This is the closed form solution of the phase detector gain for

O PSK. The results for both the BPSK and O PSK closed form

solutions are plotted in Figure 5-11. Note that the logarithm of the

square of the gain is actually plotted. This will prove useful when

the entire phase error variance equation is reconsidered in the

next chapter.
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Figure 5-11. BPSK and O PSK phase detector gain.
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For 8PSK and 16PSK a closed form solution is unobtainable.

A review of the components in (5-29) will reveal this. The data

estimates, both I and 6, require that the expected value functions

in each of the components of (5-29) be integrated over both N I

and NQ because of the interdependence between each of the

estimates and both noise channels. For each component a solution

will arise involving the integration of a "Q_' function. This cannot

be solved in closed form.

To circumvent this problem the gain is calculated directly

from the phase detector characteristic itself. By considering a

small phase error, at a specific SNR, and calculating the phase

detector characteristic output, the gain can be obtained. This

process uses the approximation that for small phase errors the

phase detector characteristic has a linear response. By so

calculating the detector's response to a small phase error and

dividing that response by the error, the slope, i.e., the gain, is

computed.

To proceed, the phase detector characteristic of (4-2?) is

employed and restated here as

(5-65)

The first step is to express the expected value function as a

summation over both discrete random variables, 0m and 0m,

yielding

138



M-1M-lsin(Oe OmjeO(Oe)= Z ,_ "b -Omi)e(Omi,brajlOe) "

i=o j=o

(5-66)

Next the mutual probability is decomposed resulting in

M-1M-1 I

PO(Oe)= ___ '_ sin[Oe + Omj -Omi )e(OmjlOmi'Oe)e(Omi )"

i=o j=o

(5-67)

The expression of conditional probability in (5-67) describes the

probability of receiving one of the M possible modulation angles

when a particular modulation angle is transmitted. The apriori

probability of the transmitted modulation angle in (5-67) equates
1to -- when the transmitted symbols are all equally likely thus

M

producing

1 M-1 M-1 ^

pD(Oe)= _ .i_0 j___0sin(0e + Omj-Ore i )P(OmjlOmi'Oe)"

(5-68)

Because the constellation is circularly symmetric each element of

the sum over the transmitted modulation angles will be the same.

Since there are M of these elements it is possible to reduce (5-68)

by fixing the transmitted modulation angle, e.g., at Om= 0, and

then replacing the outer summation by multiplying through by M.

In this way (5-68) becomes
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M-1

j=0

What remains is to describe the conditional probability of

receiving a particular modulation angle estimate given that 0m = 0.

This is accomplished by integrating the conditional density that

describes the probability of receiving a particular phase, y, given

Om= O, over the decision region of phase that corresponds to the

received modulation angle. The density is configured to account

for a phase error, 0e, and is expressed [41]

E

p(YOm=O, Oe)_e N°
2_

E

l+J4mrcos(y+Oe) e No
VNo

---COS 2 (_+0 e )

(5-70)

As was just mentioned, to compute each of the M conditional

probabilities in (5-69) it is necessary to integrate the density of

(5-70) over the decision region corresponding to each of the M

possible received phases.

Through the use of (5-69) it is possible to examine the phase

detector characteristic for any M. Figure 5-12 shows the phase

detector characteristics, using this approach, for M=2,4,8 and 16

all at an SNR of 20 dB. For each M one detector cycle has been

plotted. Note that all the characteristics have positive nearly

equivalent slopes at zero phase error. This is because at 20 dB all
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the PSK modes, with the exception of 16PSK, have a phase

detector gain of unity. The gain for 16 PSK is slightly less than

unity. Having equivalent gain follows when it is considered that at

such a high-SNR the decision device in the loop is making near

perfect decisions as to what was transmitted. As the SNR goes

down the gain will go down. This is shown for each PSK mode in

turn using Figures 5-13, 5-14, 5-15, and 5-16 for BPSK, OPSK,

8PSK, and 16PSK, respectively. In each of these plots a family of

phase detector characteristics is presented wherein each

characteristic is plotted at a different SNR. As the SNR drops the

maximum magnitude and gain drop. Note also that the maximum

magnitude of the phase error that can be tolerated before the

phase detector output swings the opposite way and causes a cycle

slip, also decreases with decreasing SNR. This is distinguished by

the movement of the phase error location, of the maximum

magnitude of the characteristic, inward toward the lock point as

the SNR goes down. Evaluating any of the characteristics in Figures

5-13 through 5-16, at a very small phase error allows for the

calculation of the gain of the phase detector characteristic, as

mentioned before, simply by dividing the result by the phase

error. For OPSK this data is plotted along with the closed form

solutions in Figure 5-11. Once again this technique of comparing

the numerical approach to the closed form solution was used for

verification. In Figure 5-17 the 8PSK and 16PSK numerical results
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are presented along with the BPSK and QPSK closed form solutions.

All of the numerical calculations were conducted using the

source code in Appendix E. The raw data are presented there as

well.

o
;> 0.5
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o
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Phase Error in radians

Figure 5-12. MPSK phase detector outputs at 20 dB SNR.
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Figure 5-13. BPSK phase detector characteristics at SNR's of 0, 2, 4,

6, 8, 10, 15, and 20 dB.
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Figure 5-14. QPSK phase detector characteristics at SNR's of 4, 6, 8,

10, 12, 15, and 20 dB.
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Figure 5-15.8PSK phase detector characteristics at SNR's of 8, 10,

12, 14, 16, 18, and 20 dB.
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Figure 5-17. MPSK phase detector gain.

5,4 The Loop Bandwidth

The third component of the phase error variance equation

that will be discussed is the loop bandwidth. As was shown in

Chapter 2, the transfer function of a classical second order

phaselock loop can be expressed by using the gain terms in the

loop as

s_rK + a_rK

H(s) = s2 + s_rK + a_[PrK

(5-7:)

or by using the classical design parameters as
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2
s2(ro n + o)n

n(s) = $2 + S2_COn + COn2" (5-72)

Further, its loop noise bandwidth can also be expressed in the

same two ways. When the gain terms are used the double-sided

loop noise bandwidth can be stated

B L - _r K+a
2 (5-73)

When the design parameters are used the result is

(5-74)

just as described in Chapter 2. In Chapter 4 the transfer function

for the second order high-SNR loop was derived and is restated

here as

asNRKo(s+a)
H(s)= s2+ OtsNRKo(S+a)" (5-75)

It was then equated to the design parameter version of the

transfer function by stating

2_"t0nS + COn2

H(s)= s2 + 2_"t0_s + COn2 (5-76)
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where

O n = (.On
(5-77)

and

(5-78)

are the "dynamic" design parameters. If the loop is designed

assuming an SNR operating condition that is high enough to make

the phase detector gain equate to unity, then the actual natural

frequency and damping factor of the loop will be exactly those of

the classical design. If operation is then conducted at lower SNR's,

where the phase detector gain is less than unity, the actual

natural frequency and damping factor will decrease from the

original design values. Among other phenomena, this has the

effect of narrowing the loop noise bandwidth. Substituting the

design parameters of (5-77) and (5-78) into the loop noise

bandwidth equation of (5-74) yields

(5-79)

This reduces to
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At high-SNR's, when aSNR = 1 the loop bandwidth of (5-80) will

equate to (5-74) just as expected. However at low SNR's when

aSNR <<1 equation (5-80) becomes

CO?/

SLtowS_R= 4---(" (5-81 )

There is a transition from one loop bandwidth at high-SNR's to a

narrower loop bandwidth at low SNR's. For all the PSK modes the

transition occurs at higher SNR's as M increases. This is shown in

Figures 5-18, 5-19, and 5-20 where the normalized bandwidth

has been plotted for 3 different damping factors. Note that the

damping factor plays a crucial role in determining the size of the

transition. As ( increases the loop bandwidth will have a much

larger transition resulting in a much narrower relative bandwidth

at low SNR's.

As has been shown, the loop bandwidth changes because the

phase detector gain changes. Both the phase detector gain and the

equivalent noise variance change because incorrect data decisions

are being made. In the next Chapter the combined effects of all

three of these components will be assimilated to calculate the

variance of the phase error as a function of SNR.
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Figure 5-18. MPSK normalized loop noise bandwidth with 4=2.0.
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Figure 5-19. MPSK normalized loop noise bandwidth with _=1.0.
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Chapter 6

PHASEERRORVARIANCERESULTS

"Why Think? Why not try the experiment?"

John Hunter

anatomist & surgeon, 1728 - 1 793

6.1 Introduction

In Chapter 5 all of the complex components of the phase

error were investigated individually. In this Chapter they will be

combined in the equation for the phase error variance of the

MPSK carrier tracking loop that uses the high-SNR approximation

to MAP estimation. Once again this very important equation is

restated for convenience as

2
2 BL I_Ne

(70e -- SR a NR" (6-1)

6.2 N-Phase Lo_

The first step in investigating the combined affect of each of

the varying components of the right side of (6-1) is to reconsider

the equivalent noise variance in light of the data obtained in

Chapter 5. At high-SNR's the variance of the equivalent noise, for

all M, can be approximated by the result for BPSK, namely, the
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reciprocal of twice the signal-to-noise ratio. At low SNR's, for M>2,

the self-noise in the receiver lessens the equivalent noise

variance. It is possible to express the equivalent noise at any SNR

and for all M, in terms of the BPSK approximation and the self

noise, as

No (6-2)

where _ is the self noise and is a function of SNR. It follows that

for BPSK the self noise term is unity for any SNR. As stated above,

for M>2 at high-SNR's it will also equate to unity. At low SNR's,

when the self noise is significant, it can be calculated using the

equivalent noise variance data in Chapter 5 and equation 6-2.

Substituting this new expression for the equivalent noise

variance into (6-1) yields

2 NoBL (6-3)

The reciprocal of the third fraction of (6-3) has a special

designation. It is known as the N-phase loss. 1 Its effect is to

increase the variance as the SNR goes down and is expressed as

1Classically this term has used the name "squaring loss". Its origin comes
from the times-N loop employed for BPSK where N = 2. In that loop the
received signal was squared to remove the modulation and provide a
discrete spectral component at twice the carrier frequency for tracking

purposes. The trade-off was an increase in the variance of the phase jitter

known as squaring loss.
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NL = O_2NR
(6-4)

The variance of (6-3) now becomes

,r e _ No B, 1
2E SR NL" (6-5)

Note that as NL gets smaller the variance goes up. This special

term incorporates two competing effects for M>2. As the SNR goes

down the self noise goes down. This should increase the N-phase

loss and lessen the variance. However as the SNR goes down the

phase detector gain goes down as well and this dominating effect

lowers the N-phase loss overall, thus increasing the variance. In

fact the N-phase loss has been approximated solely by the square

of the phase detector gain for QPSK at reasonable SNR's of interest

[35]. This approximation is valid for M>2 and is expressed as

NL = O_2NR o (6-6)

To see that this approximation is valid consider Figure 6-1 where

both equations (6-4) and (6-6) have been plotted for M>2. Only

for QPSK and 8PSK at low SNR's is the effect of self noise evident.

156



Figure 6-1. MPSK N-phase loss.

Th L BandwidhAndTh m 1Rae

The second fraction of (6-5) is the ratio of the loop

bandwidth to the symbol rate. As was mentioned in Chapter 4, for

this type of loop this ratio is typically very small. To make the

variance of the phase error data useful it is helpful to plot the

data using the ratio of the high-SNR loop bandwidth to the symbol

rate. That way loop designers can use the variance results at

symbol rates of interest to them. This means that the variance can

be expressed as
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0.2 No BLHIGHSNR l
O_= _'_ t-tsNR SR NL (6- 7 )

where l.tsu R is the loop bandwidth compression factor. The

normalized loop bandwidth data plotted in Figures 5-18 through

5-20 are actually plots of the loop bandwidth compression factor

for various MPSK using 3 different damping factors. While the

compression factor does decrease the variance of the phase error,

its effect is limited. It causes a maximum amount of compression

of the bandwidth, at low SNR's, that is a function of the damping

factor. It is expressed, using (5-74) and (5-80), as

(aSNR4¢ 2 + 1)

Us ,,= + (6-8)

When the phase detector gain becomes very small _SNR reaches a

minimum value, corresponding to the maximum amount of

compression to the loop bandwidth. It is of interest to note that

once again, in terms of variance of the phase error, there is a

trade-off between the slight beneficial effect of the compressing

bandwidth, which lessens the variance with decreasing SNR, and

the decreasing phase detector gain, i.e., N-phase loss, which

increases the variance with decreasing SNR. The N-phase loss

dominates in this trade-off since it decreases as the square of the

phase detector gain and since the compression factor reaches a

minimum value while the N-phase loss continues to decrease.
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_,4 The Variance Of The Phase Error

Having isolated and considered the combined effects of self

noise and phase detector gain as one term, i.e., N-phase loss, and

having discussed the changing loop bandwidth-to-symbol rate

ratio, it is now prudent to evaluate the variance of the phase

error. Referring to equation (6-7) the variance can be plotted

using the data obtained in Chapter 5. The variance data is

presented for BPSK, Q.PSK, 8PSK and 16PSK in Figures 6-2, 6-3, 6-

4, and 6-5 respectively. The data are presented for various high-

SNR loop bandwidth-to-symbol rate ratios all with a damping

factor of _ = 1 and is tabulated in Appendix F.
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Figure 6-2. BPSK theoretical variance of phase error.
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Figure 6-3. QPSK theoretical variance of phase error.
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Figure 6-5.16PSK numerical variance of phase error.

As expected the variance increases with diminishing SNR. At

high-SNR's when the N-phase loss and loop compression factor are

unity, the variance of the phase error can be approximated by

No. BLmans_g... (6-9)2 =
_r°,m_nS_R 2E SR

At low SNR's when the N-phase loss begins to decrease more

rapidly the variance increases faster than the SNR decreases. This

creates a thresholding effect where the variance curves begin to

rise upward very quickly. There are several other characteristics

of these curves that warrant disscussior_ as well.

161



Notice first that at high-SNR's there is a linear trade-off

available to the loop designer in pursuit of maintaining a specific

variance of phase error. The trade-off is between loop bandwidth

and SNR. This trade-off is evident in equation (6-9) as well. If it is

desired to lower the operating SNR by 3 dB, while still maintaining

the same variance, the designer need only narrow the loop 3 dB

(assuming other system constraints permit this option).

Unfortunately at low SNR's this trade-off is not linear.

Narrowing the loop bandwidth 3 dB does not allow the designer to

decrease the SNR 3 dB. This affect is demonstrated by considering

the compression of the spacings between the variance curves in

the thresholding region. Moving right from one variance curve to

another along a fixed horizontal line of variance represents a 3 dB

change in high-SNR loop bandwidth. As stated above, at high-

SNR's this move also corresponds to a 3 dB drop in SNR. However,

at low SNR's, specifically in the thresholding region, the move

from one curve to another corresponds to less than a 3 dB

decrease in SNR. The trade-off has diminished.

Another interesting characteristic of the thresholding effect

is that it is a strong function of the SNR and a relatively weak

function of the loop bandwidth. This is attributed to the reliance

of the N-phase loss on SNR. It is noted graphically by first

considering again that at any SNR a 3 dB change in loop

bandwidth corresponds to a 3 dB change in variance (moving

vertically from one curve to another). Next consider that, in the
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threholding region, a 3 dB change in SNR can correspond to a

change in variance of several orders of magnitude. Thus the

variance is strongly dependent on the SNR.

A further, highly significant characteristic suggested by this

data is that SNR's, where power-limited channel operation has

been conducted for O PSK, may be too low to support 8PSK and

especially 16PSK operation. This is the case because the SNR at

which the thresholding region occurs increases with M. As was

mentioned in Chapter 1, there is strong interest in using coded

8PSK and 16PSK systems to increase performance in limited

channels. If the maximum available SNR is near or below the

threshold region of the variance curves, then operation may not

be possible because the variance does not meet operational

specifications.2 Further, as will be shown with the following

simulation and hardware results, the loop may actually have

trouble maintaining phaselock at SNR's in the threshold region.

6,5 Simulation Results

To verify that the numerical results for the 8PSK and 16PSK

variance of the phase error were correct, simulations of the loop's

operation were conducted. These simulations were conducted

using the nonlinear baseband model of Figure 4-2. The code and

raw data from the simulations are in Appendix G. The BPSK and

2A variance of -35 db-radians 2 represents an approximate RMS jitter of 1 °

while -25.6 db-radians 2 corresponds to about 3 °.
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QPSK simulation data match the theoretical results and thus

confirm the simulation technique is accurate. The 8PSK and 16PSK

simulation results are therefore assumed to be correct and indeed

they confirm the numerical approach of calculating the variance is

accurate when they are plotted together.

The simulation data are shown in the following 12 plots. The

first three plots, Figures 6-6, 6-7, and 6-8, are for BPSK at three

different high-SNR loop bandwidth-to-symbol rate ratios. Note,

once again, that the reference here to high-SNR loop bandwidth

corresponds to the case where the phase detector gain is unity.

This loop bandwidth can also be referred to as the "design" loop

bandwidth in that the classical loop design parameters are the

operational parameters only at high-SNR's. The selected loop

bandwidths were chosen to match the available hardware

configurations. The simulation data are plotted with a 95%

confidence interval.

Figures 6-9, 6-10, and 6-11 are for O_PSK at the same design

loop bandwidths as BPSK. Following these are Figures 6-12, 6-13,

and 6-14 for 8PSK and Figures 6-15, 6-16, and 6-17 for 16PSK all

reflecting the same bandwidths as that of BPSK and O_PSK.
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Figure 6-11 QPSK variance of phase error theoretical and
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Figure 6-16 16PSK variance of phase error numerical and

simulation data.
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Figure 6-17 16PSK variance of phase error numerical and

simulation data.

6.6 Hardware Results

As a third means of quantifying the variance of the phase

error an MPSK high-SNR carrier tracking loop was constructed in

hardware. The hardware has limits on the operational parameters

it can support. It only has 64 loop bandwidth configurations. A

specific loop bandwidth is selected by controlling the gains in the

loop. Three of these bandwidths were selected over the range of

operation of the hardware. They are the bandwidths used for the

simulations mentioned in Section 6.5. The next 12 plots are the
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hardware results for the variance of phase error. As with the

simulations they are presented in sequence for each modulation

scheme. The BPSK data are plotted in Figures 6-18, 6-19, and 6-20

and the QPSK data in Figures 6-21, 6-22, and 6-23. Figures 6-24,

6-25, and 6-26 are the 8PSK data and Figures 6-27, 6-28, and 6-

29 are the 16PSK data. These data are tabulated in Appendix H

along with a discussion of the hardware operation.
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Figure 6-18 BPSK variance of phase error theoretical and

measured data.
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Figure 6-20 BPSK variance of phase error theoretical and

measured data.
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Figure 6-21 O PSK variance of phase error theoretical and

measured data.
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Figure 6-23 QPSK variance of phase error theoretical and

measured data.
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Figure 6-25 8PSK variance of phase error numerical and

measured data.
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Figure 6-27 16PSK variance of phase error numerical and

measured data.
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Figure 6-28 16PSK variance of phase error numerical and

measured data.
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Figure 6-29 16PSK variance of phase error numerical and

measured data.
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6.7. Discussion Of The Simulation And Hardware Results

As the simulation and hardware data plotted in Figures 6-6

through 6-29 indicate there is substantial verification of the

numerical approach used to calculate the variance of the phase

error. With the exception of a few samples, all of the simulation

data is within a 95°/6 confidence interval of the theoretical and

numerical solutions of the phase error variance. Before the

validity of the hardware results can be discussed, an interesting

phenomena in that data must be addressed. This phenomena is

the minimum measured phase jitter that is represented by the

flair in the hardware variance curves.

The presence of a phase jitter floor makes sense when it is

considered that the hardware cannot obtain infinitely small

variance of phase error data. There are several causes for this.

First, the NCO uses direct digital synthesis to create its sinusoid

outputs. As such it cannot exactly recreate the desired frequency.

Related to this is the minimum phase error that will cause the

minimum possible error signal to be created at the output of the

EPROM's. This minimum error is approximately 0.5 ° measured

along the constellation circle from the I or O_axis. There is the

added affect of the variance measuring device, i.e., the modulation

analyzer. This device digitizes the I and O_analog baseband data to

creates samples that are then used to calculate the variance.
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This variance noise floor in the hardware data dominates

the results at high-SNR's only. At low SNR's the variance in the

phase error data is accurately reflecting the mechanism of

interest, i.e., the overall loss in performance due to making

incorrect data decisions in the carrier tracking loop. When the

MPSK theoretical and numerical data are "corrected" to account for

the phase noise floor present in the hardware the results are

accurate at all SNR's.

One last noted characteristic that is present in the 8PSK and

16PSK data from both the simulation and the hardware results is

a minimum SNR below which phaselock cannot be maintained.

While quantifying this phenomenon analytically requires an in-

depth study of non-linear loop operation, some conclusions can be

drawn from the simulation and hardware results since they are

not affected by the constraints of linear analysis.

In the plots of simulation data and hardware data for 8PSK

and 16PSK, the lowest SNR at which a data point is plotted

represents the minimum SNR for which phaselock can be

maintained. The striking result in this data is that the SNR where

phaselock terminates seems to be a weak function of loop

bandwidth and a strong function of SNR. For both 8PSK and 16PSK

the simulation and hardware data cover a 5.4 dB range of high-

SNR loop bandwidth-to-symbol rate ratios (from 0.19% to 0.66%).

However, the phaselock threshold moves at most 1.6 dB for the
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8PSK hardware results and not at all for the 16 PSK simulation

results.
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Chapter 7

CONCLUSIONS

"Thinking makes it so."

William Shakespeare

dramatist and poet, 1564-1616

7,1, Discussion

Quantifying the phase error variance of the carrier reference

in an 8PSK or 16PSK receiver utilizing the high-SNR approximation

to MAP estimation in a carrier tracking feedback loop was the

motivating problem behind this research effort. This was

accomplished by three different methods, including theoretical

and numerical analysis, simulation, and laboratory hardware

testing. All of these methods first required an understanding of

the phase error variance and its origins. Chapter 2 is a discussion

of what phase error variance is in a simple phaselock loop. This

information alone is insufficient to understand the phase error

variance in the phaselock loop of interest since it is a loop that

tracks a DSB-SC MPSK signal as opposed to a CW carrier. The

mechanism utilized to track the DSB-SC MPSK signal is an

approximation to the optimum solution in the MAP sense. This

approximation, i.e., the high SNR approximation, is a commonly

employed and studied technique as outlined in Chapter 1. Chapter

3 provides a discussion of the MAP estimator approach and the
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high-SNR approximation approach to estimating carrier phase.

Riter and Hon [26] have previously discussed the optimum MAP

estimator for BPSK while Simon [32] discussed the optimum MAP

estimator for QPSK and 8PSK. Simon also presented the high-SNR

loop structure for MPSK. The 16PSK MAP estimator solution is

presented here in this research effort following the approach of

Simon. Using the integro-differential equation for the high-SNR

loop, the MPSK variance of phase error was derived in Chapter 4.

The technique utilized for this follows the classical approach (see

Chapter 2) and was verified by the OPSK variance of phase error

derivations of Lindsey and Hinedi [35].

Quantifying the variance of phase error for the BPSK and

QPSK high SNR loop has been accomplished [37, pg. 91][35] using

the independence of the quadrature data estimates on their

respective orthogonal noise components. Because of only recent

increased interest in 8PSK and 16PSK and because the above-

mentioned independence does not exist for these M>4 PSK

schemes, the variance of phase error had not previously been

quantified for M>4 in the high-SNR loop. The exact problem

concerned the calculation of two components of the phase error

variance, namely, the variance of the equivalent noise in the loop

and the phase detector gain. A third previously uncalculated

component of the phase error variance, the loop bandwidth, is a

function of the phase detector gain. In Chapter 5 the calculation of

all three of these components is accomplished. The approach is
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verified using the previously published BPSK and QPSK results

mentioned above. This theoretical analysis and set of numerical

solutions represented the first method used to obtain the variance

of phase error for 8PSK and 16PSK. The resultant data are shown

in Chapter 6.

Simulations of the high-SNR loop were conducted to verify

the results of the numerical solutions for 8PSK and 16PSK. The

nonlinear baseband model of the loop was utilized in these

simulations and the method verified by first simulating BPSK and

QPSK. This second method of obtaining the variance data confirms

that the numerical solutions for the components of the phase error

variance and the variance itself are accurate.

The third method of obtaining variance of phase error data

is in some ways the most important. An MPSK carrier tracking

loop was constructed in hardware and used to obtain laboratory

measurements of the variance of phase error. This is actual

performance data as opposed to either analysis or simulation data.

The hardware environment was designed so that the variance

measurements reflected, as closely as possible, only the effects

studied in this research. This was accomplished by removing other

unknowns from the test configuration that would influence the

variance such as symbol timing jitter, intersymbol interference,

and received signal automatic gain control jitter. As the results of

Chapter 6 and the discussion of Appendix H indicate, the

hardware data verified both the numerical and simulation results.
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Having quantified and verified the phase error variance for

8PSK and 16PSK and having plotted it as a function of both SNR

and loop bandwidth it was possible to draw certain conclusions.

Chapter 6 contains a discussion of these observations and so they

are only summarized here.

The data show that at high SNR's the variance is directly

related to both the SNR and loop bandwidth and can be obtained

by the use of the approximation in (6-9). It should be noted that

this form of the equation for variance closely follows the equation

for variance of the basic PLL, namely (2-5 2). In fact equating the

IF bandwidth to the symbol rate yields an exact match. This

follows esoterically, too, when it is considered that at high SNR's

the high-SNR MPSK loop makes good data decisions and produces

an error signal that exactly matches that of the basic PLL. It is at

low SNR's that the variance performance of the high-SNR MPSK

loop is poorer than that of the basic PLL.

At low SNR's the variance begins to increase more rapidly

than the SNR decreases. Further the high-SNR trade-off between

loop bandwidth and SNR is degraded. Another interesting

phenomenon is that the SNR location at which the variance begins

to increase rapidly, the threshold region, cannot be moved

appreciablely by a judicious narrowing of the high-SNR design

loop bandwidth. The data also demonstrate that the location of the

thresholding region may cause difficultly in systems attempting to

use M>4 PSK schemes if operation is power limited. For 8PSK this
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threshold occurs at an SNR of about 8dB and for 16PSK it occurs at

about 15dB. A case in point is that of NASA's TDRSS BPSK/Q.PSK

links. Typically they operate with SNR's on the order of 10 dB. If

8PSK is employed, as is being considered at this time, and the

high-SNR loop structure is utilized, not only may the variance be

excessive but the simulation and hardware data suggest that

phaselock performance may be marginable. Further, this data

suggests successful 16PSK operation would be unobtainable at 10

dB SNR.

Having considered some of these unique characteristics of

the 8PSK and 16PSK variance of phase error data, quantified in

this study, it is clear that coherent receiver design for these

schemes must include a thorough analysis of the carrier tracking

loop to be implemented. The high-SNR approximation is a popular

choice, however, operation may not be possible if relatively high

SNR conditions are not available. Designs involving the use of

coded M-ary PSK schemes to increase performance in limited

channels are a prime example.

7.2. Where To Nexl;?

The use of the high-SNR approximation is just that: an

approximation. The first obvious solution to improving the

variance performance is to study the use of the optimum MAP

estimator itself. It may yield superior performance at the SNR's of
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interest and push the threshold region to the left, i.e., to a lower

SNR. Further, the barrier to implemention, namely analog

hardware construction of hyperbolic operators, no longer exists,

since digital receivers are now commonplace. In point of fact, this

is exactly the research avenue being pursued by the

telecommunications department at NMSU. Early results suggest

that there is a small performance increase in using the optimum

MAP estimator for 8PSK [42].

Another option for possibly increasing the performance of

the M>4 PSK receiver is to use coding to increase the performance

of the data estimators. This was suggested for 8PSK by

Ungerboeck [43]. Since the location of the threshold region is

indirectly traceable to making bad data decisions, if the data

decision process can be improved by coding gain, then the

threshold region should move to the left. This idea is particularly

attractive for systems where coding is already being employed,

e.g., 8PSK and 16PSK TCM. Care must be exercised in utilizing this

option to ensure that loop stability is not compromised by the

required delay inherent in making estimates with such schemes.

Another area of interest in these loops that warrants study

is the acquisition process. Several factors make the M>4 loops

particularly attractive for study in this regard. First, the number

of stable phaselock points in the constellation increases with M. In

fact, there are M phaselock points in an MPSK carrier tracking

feedback loop. It is also true that there are M unstable points that
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generate zero phase error. It follows that the maximum phase

error that can be tolerated drops with increasing M.

Another important factor in the acquistion process is the

loop bandwidth. It has a strong relationship to acquistion

parameters such as mean-time-between-cycle slips and, as was

demonstrated, the loop bandwidth is narrowed as the SNR drops.

Other factors, such as lock-in range and hold-in range, would also

be affected since the loop bandwidth is changing.
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Appendix A

SIMULATION COMPARISON BETWEEN HIGH SNR MAP LOOP AND

LECLERT & VANDAMME VARIATION

To assist in making the decision as to which type of tracking

loop to consider for the study of phase error variance two loop

designs were compared using 8PSK simulations of each. To

compare the two loops they were simulated at the same loop

bandwidth over a range of SNR's. A static loop bandwidth was

maintained in each loop by varying the phase detector gain. These

early simulations were written in C. The source code for the

Leclert & Vandamme simulation is:

/*Leclert & Vandamme 8PSK simulation of carrier recovery
with fixed loop bandwidth-to-symbol rate ratio*/

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

main()

{

/*declare system parameters*/

int k;
int m;
int j;
int s;
int n;
int i;
int uncore;
double errk;

double phsk;
double refkl;

double pdifk;

/*discrete time variable*/
/*discrete time variable*/
/*discrete time variable*/
/*discrete time variable*/
/*discrete time variable*/
/*discrete time variable*/
/*discrete time variable*/

/*error signal out of phase
detector at time k*/
/*received signal phase at time k*/

/*phase of VCO at time k+ 1"/
/*phase difference between
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double ik;

double imk;
double qk;

double qmk;
double ilk;

double i2k;

double a;

double t;
double kO;

double ilk1;

double sum;

double wn;

double damp;
double bw;
char dptr[ 10];

char pdgains[lO];

double endb;

double pdgain;
double phsfix;
double sqrerr;

double sumerr;

double meanphs;
double varphs;

received signal & VCO at time k*/
/*received value for I sample at
time k*/

/*generated I sample at time k*/
/*received value for Q sample at
time k*/

/*generated Q sample at time k*/
/*initial condition of filter

integrator at time k*/
/*initial condition of VCO

integrator at time k*/
/*inverse of the one pole filter

time constant, 3dB break point*/
/*symbol period*/
/*the VCO slope in Hertz per Volt*/
/*hold variable for intial

condition, I1, at time k+l*/

/*averaging of phase detector
error*/

/*user entered natural freq.
of loop*/
/*damping factor*/
/*loop bandwidth*/
/*string pointer for entering
floating point numbers*/
/*string pointer for entering
floating point numbers*/
/*E(s)/N(o) in dB*/
/*phase detector gain*/

/*fixed initial phase*/
/*running sum of squared phase
error refkl*/

/*running sum of phase error
refkl*/

/*mean of phase error*/
/*variance of phase error*/

static double pdgmx[8] = {1.5425, 2.5, 4.0, 5.7, 7.3, 8.1, 9.0, 10.0};

/*declare data generation parameters*/

int d;
double testd;

/*declare QPSK test parameters*/

double xl;
double x2;

/*declare phase detector variables. These will be moved into a

subroutine eventually*/
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double rcvdp;

double ihatk;

double qhatk;

/*the phase of the received vector
whose components are ik and qk*/
/*for this phase detector this is the

output from the circular
quantizer*/
/*for this phase detector this is the

output from the circular
quantizer*/

double errkhold;
int count;

/*declare noise model parameters, sigma is the WGN standard

deviation, nik and nqk are the gaussian noise samples at time
k with mean zero and standard deviation sigma.*/

double sigma;

long xcon 1;
long xcon2;
long x;
long y;
double sample1;
double sample2;
double nik;
double nqk;

/*declare output file parameters*/

FILE *outfile;
char *modehold;

char *nameholdl;

/*initialize file output parameters*/

modehold = "w";
nameholdl -- "Vandam";
outffle = fopen(nameholdl,modehold);

/*initialize uniform RV seed for repeated tests*/

srand(2546);

y -- 47;/*seed*/

/*initialize phase step*/

phsfix = 0.0;

/*input natural frequency, damping factor, and Es/No for

loop*/
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printfCThis is a second order carrier loop synchronizer
simulator\n");

print.f("Xn");

printf("Please enter the natural frequency of the loop
transfer function:Xn");

printfC\n");

scanf("%s",dptr);

wn = strtod(dptr,NULL);

printf("Xn");

printf("Now please enter the loop damping factor:\n");

printfC\n");

scanf("%s",dptr);

printf("\n");

damp = strtod(dptr,NULL);

printf("\n");

bw = wn*(damp + 1.0/(4.0*damp));

a = wn/(2*damp);

/*determine sample interval that is required to uncorrelate
phase error variance calculation*/

uncore = floor(3.1415927/wn/4.0);

/*initialize phase detector gain counter*/

i = -1;

printf("\n");
printfCThe loop noise bandwidth is: %f Hz\n",bw);
prinffC\n");
printf("The loop filter time constant is: %f sec\n",a);
printf("\n");
fprintf(ouffile,"8-PSK reconstruction loop results\n");
fprintf(outfile,"kn");
fprintf(outfile,"Initial phase step = %f_n",phsfix);
fprintf(ouffile,"\n");
fprinff(ouffile,"Noise random seed = %ldkn",y);
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fprintf(outfile,"\n");
fprintf(outfile,"wn = %f_n",wn);

fprintf(outfile,"\n");
fprinff(ouffile,"damping factor = %f_n",damp);

fprintf(outfile,"kn");
fprintf(outfile,"The loop noise bandwidth is: %f Hz\n",bw);

fprintf(outfile,"\n");
fprintf(outfile,"The loop filter time constant is: %f sec\n",a);

fprintf(outfile,"\n");
fprintf(outfile,"The number of skipped samples for
correlation is: %d kn",uncore);

fprinff(outfile,"\n");

/*begin simulation*/

for(j-- 10;j<=24;j=j+2)

{
i = i+1;
endb = ];
sigma = 1.0/sqrt ( 2.0*pow(lO.O,endb/10.0) );

/*initialize system parameters*/

ilk = 0.0;

i2k = phsfix;
refkl = i2k;

t = 1.0;
errkhold = 0.0;

phsk = 0.0;
errk = 0.0;

xcon2 = 16807;

xconl = 2147483647;

sqrerr = 0.0;
sumerr = 0.0;

s ---O;
pdgain = pdgmx[i];
k0 = 2*damp*wn/pdgain;

/*for RV generation*/
/*for RV generation*/

for(k=O;k<40;++k)

{
for(m = O;m<5OO;++m)

{
/*construct received phase, noise, and transmitted data*/

/*running variance calculation*/

if (k > 19)

if (fabs(refkl) < 0.392699)

{
s=s+ 1;
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sqrerr = sqrerr + refkl*refkl;
sumerr = sumerr + refkl;

for(n=O;n<uncore;++n)

/*received phase*/

/*phsk = O.O01*k;*/

/*noise*/

/*

*/

x = rand();

y = rand();
samplel = (x/32767.0)*0.999999;
sample2 = (y/32767.0)'0.999999;

x =ldiv(y,xcon i ).rem;
x=labs(x*xcon2 );

y =ldiv(x,xcon 1).rem;
y=labs(y*xcon2);

samplel = (x/2147483647.0)'0.999999;
sample2 = (y/2147483647.0)*0.999999;

nik = sigma*sqrt(-2.0*log( 1.0-sample i ))
*cos(2.0*3.1415926S'sample2);

nqk = sigma*sqrt(-2.0*log( 1.0-sample i ))
*sin ( 2.0*3.1415926 S'sample 2 );

/*transmitted data*/

d = rand(); /*d is now divided into 8 regions each
representing a possible xmitted symbol*/

if(d < 4096)
{
imk = 0.9238?9;

qmk = 0.382683;
}

else if((d >= 4096) && (d < 8192))
{
imk = 0.382683;
qmk = 0.9238?9;

else if((d >= 8192) && (d < 12288))
{
imk = -0.382683;
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qmk = 0.923879;
t

else if((d >= 12288) && (d < 16384))

{
imk = -0.923879;

qmk = 0.382683;
t

else if((d >= 16384) && (d < 20480))

{
imk = -0.923879;

qmk = -0.382683;
t

else if((d >= 20480) && (d < 24576))
{
imk = -0.382683;

qmk = -0.923879;

}
else if((d >-= 24576) && (d < 28672))

{
imk = 0.382683;

qmk = -0.923879;
}

else
{
imk = 0.923879;

qmk = -0.382683;
}

/*end generation part of the simulation, this generated
information will be used for this value of the simulation

counter only*/

/*subtract the reference phase from the received phase*/

pdifk = phsk - refkl;

/*calculate the received symbol values for I and Obased on

the generated data and noise and the phase difference pdifk*/

ik = imk*cos(pdifk) - qmk*sin(pdifk) + nik;

qk = imk*sin(pdifk) + qmk*cos(pdifk) + nqk;

/*Now implement a phase detector to generate a phase error

signal errk. This implementation performs a circular
quantization on I and O followed by some algebra to develop
the error signal.*/

/*calculate the phase of the received vector. The atan2
function adjusts for the appropriate quadrant.*/

rcvdp = atan2(qk,ik);
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/*quantize rcvdp into ihatk and qhatk*/

if ((rcvdp >= 0.0) && (rcvdp < 0.785398))

/* 0 <= rcvdp < Pi/4 */

{
ihatk = 0.923879;
qhatk = 0.382683;

else if ((rcvdp >-- 0.785398) && (rcvdp < 1.570796))

/* Pi/4 <= rcvdp < Pi/2 */

I
ihatk = 0.382683;
qhatk -- 0.923879;

else if ((rcvdp >= 1.570796) && (rcvdp < 2.356194))

/* Pi/2 <= rcvdp < 3Pi/4 */

{
ihatk = -0.382683;
qhatk = 0.9238?9;
}

else if ((rcvdp >= 2.356194) && (rcvdp < 3.141593))

/* 3Pi/4 <-- rcvdp < Pi */

{
ihatk = -0.923879;
qhatk -- 0.382683;

else if ((rcvdp < -2.356194) && (rcvdp >= -3.141593))

/* -3Pi/4 < rcvdp >= -Pi */

{
ihatk = -0.923879;
qhatk = -0.382683;

else if ((rcvdp >= -2.356194) && (rcvdp < -1.570796))

/* -Pi/2 > rcvdp >= -3Pi/4 */

{
ihatk = -0.382683;
qhatk = -0.923879;
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else if ((rcvdp >= -1.570796) && (rcvdp < -0.785398))

/* -Pi/4 > rcvdp >= -Pi/2 */

{
ihatk = 0.382683;
qhatk = -0.923879;
l

else if ((rcvdp >= -0.785398) && (rcvdp < 0.0))

/* 0 > rcvdp >= -Pi/4 */

{
ihatk = 0.923879;
qhatk = -0.382683;
}

/*calculate the phase error errk as a function of ik, qk, ihatk,

and qhatk.*/

errk = ((qk-qhatk)/fabs (qk-qhatk))* (ik/fab s(ik)) -

((ik_ihatk)/fabs(ik-ihatk))*(qk/fabs(qk));

/*This is the end of the phase detector*/

/*The next step considers the loop filter and VCO in one
transfer function, as a difference equation. It calculates the

phase of the VCO, re_l, for the next simulation iteration.
re_l is based not only on the error signal, errk, but also on
the state of the integrators that make up the one pole low-pass
filter and the VCO. The filter can be represented by the
function, 1 + a/s. a is one-over-the time constant, RC, of the
filter. The VCO xfer function can be considered as k0/s. kO is
the ratio describing the output frequency of the VCO in terms
of the input error voltage from the loop filter. The filter
integrator initial condition at time k is ilk. The VCO integrator
initial condition at time k is i2k. The integration period is t. In
discrete time these transfer funcitons can be implemented as
follows*/

re_l = i2k + k0*t*errk + ilk*k0*t + a*kO*t*t*errk/2.0;

/*now reset the integrator intial conditions for the next

iteration*/

i2k = refkl;
ilk1 = ilk + a*t*errk;
ilk = ilk1;
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}
meanphs = (sumerr/s);

varphs = sqrerr/s - meanphs*meanphs;

fprintf(outfile,"\n");

fprintf(outfile,"E(s)/N(o) = %4.1f, mean of error = %10.7f,
variance of error = % 10.7_n",endb,meanphs,varphs);

fprintf(outfile,"The phase detector gain used was:
%fkn",pdgain);

fprintf(ouffile,"The number of samples used in the previous
statistical analysis is: %dkn",s);

fprinff(ouffile,"\n");

printf("Es/No = %4.1f, mean = %f, variance = %f, samples =
%d\n",endb,meanphs,varphs,s);

}
fclose(outfile);

The source code for the high-SNR loop simulation is:

/*high SNR 8PSK simulation of carrier recovery with fixed
loop bandwidth-to-symbol rate ratio*/

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

main()
{

/*declare system parameters*/

int k;
int m;

int j;
int n;
int s;

int uncore;

/*discrete time variable*/
/*discrete time variable*/
/*discrete time variable*/
/*counter*/

/*number of samples used in
variance calculation*/

/*number of samples to skip over
for variance calculation*/
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double errk;

double phsk;
double refkl;

double pdifk;

double ik;

double imk;

double qk;

double qmk;
double ilk;

double i2k;

double a;

double t;
double kO;
double ilk1;

double sum;

double wn;

double damp;
double bw;
char dptr [10];

char pdgains[lO];

double endb;

double pdgain;

double phsfix;
double sqrerr;

double sumerr;

double meanphs;
double varphs;

/*error signal out of phase detector
at time k*/
/*received signal phase at time k*/

/*phase of VCO at time k+l*/
/*phase difference between
received signal and VCO at time k*/
/*received value for I sample at
time k*/

/*generated I sample at time k*/
/*received value for O_sample at

time k*/
/*generated Q sample at time k*/
/*initial condition of filter

integrator at time k*/
/*initial condition of VCO

integrator at time k*/
/*inverse of the one pole filter time
constant (the 3dB break point)*/

/*symbol period*/
/*the VCO slope in Hertz per Volt*/
/*hold variable for intial condition,

I1, at time k+l*/
/*averaging of phase detector
error*/
/*user entered natural frequency

of loop*/
/*damping factor*/
/*loop bandwidth*/
/*string pointer for entering
floating point numbers*/
/*string pointer for entering
floating point numbers*/
/*E(s)/N(o) in dB*/
/*phase detector gain*/
/*fixed initial phase*/

/*running sum of squared phase
error refkl*/

/*running sum of phase error
refkl*/
/*mean of phase error*/
/*variance of phase error*/

/*declare data generation parameters*/

int d;
double testd;

/*declare QPSK test parameters*/

double xl;
double x2;
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/*declare phase detector variables. These will be moved into a
subroutine eventually*/

double rcvdp;

double ihatk;

double qhatk;

/*the phase of the received vectort

whose components are ik and qk*/
/*for this phase detector this is the
output from the circular
quantizer*/
/*for this phase detector this is the
output from the circular
quantizer*/

double errkhold;
int count;

/*declare noise model parameters, sigma is the WGN standard

deviation, nik and nqk are the gaussian noise samples at time
k with mean zero and standard deviation sigma.*/

double sigma;
long xcon i;
long xcon2;
long x;
long y;
double sample1;
double sample2;
double nik;
double nqk;

/*declare output file parameters*/

FILE *outfile;
char *modehold;
char *namehold 1;

/*initialize file output parameters*/

modehold = "w";
nameholdl = "kghigh";
outfile = fopen(nameholdl,modehold);

/*initialize uniform RV seeds for repeated tests*/

srand(2546);
y = 47;/*seed*/

/*initialize phase step*/

phsfix = 0.0;
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/*input natural frequency, damping factor for loop*/

printf("This is a second order carrier loop synchronizer

simulator\n");

printf("\n");
printf("Please enter the natural frequency of the loop
transfer function:\n");

printf("\n");
scanf("%s",dptr);
wn = strtod(dptr,NULL);

printf("kn");
printf("Now please enter the loop damping factor:\n");

printf("kn");
scanf("%s",dptr);

printf("kn");
damp = strtod(dptr,NULL);

printf("\n");
printf("And finally, please enter the phase detector gain:\n");

printf("\n");
scanf("%s",pdgains);

printf("kn");
pdgain = strtod(pdgains,NULL);

printf("\n");
printf("\n");
printf("kn");
printf("wn -= %f, damp =- %fkn",wn,damp);

printf("kn");
printf("phase detector gain = %fkn",pdgain);

bw = wn*(damp + 1.0/(4.0*damp));

k0 = 2*damp*wn/pdgain;

a = wn/(2*damp);

/*determine sample interval that is required to uncorrelate

phase error variance calculation*/

uncore = floor(3.1415927/wn/4.0);

prinff("\n"); ,,
printf("The loop noise bandwidth is: %13.10f Hz\n ,bw);

printf("\n");
print.fCThe gain is: %f rad/sec/VoltXn",k0);

printf("Xn");
printf("The loop filter time constant is: %f sec\n",a);

printfC\n");
printf("The number of skipped samples for correlation is: %d

\n",uncore);

printfCXn");
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fprintf(outfile,"8-PSK High SNR MAP estimator loop
results\n");

fprintf(outfile,"\n");
fprintf(ouffile,"Initial phase step = %fkn",phsfix);

fprinff(outfile,"kn");
fprinff(outfile,"Noise random seed = %ldkn",y);
fprintf(outfile,"\n");
fprintf(outfile,"wn = %fkn",wn);
fprintf(outfile,"\n");
fprintf(outfile,"damping factor = %fkn",damp);
fprintf(outfile,"kn");
fprintf(outfile,"The loop noise bandwidth is: %f Hzkn",bw);

fprintf(outfile,"kn");
fprintf(outfile,"The gain is: %f rad/sec/Voltkn",k0);
fprintf(outfile,"kn");
fprinff(ouffile,"The loop filter time constant is: %f seckn",a);

fprintf(outfile,"kn");
fprinff(ouffile,"phase detector gain = %fkn",pdgain);

fprintf(ouffile,"kn");
fprintf(outfile,"The number of skipped samples for
correlation is: %d \n",uncore);

fprintf(outfile,"\n");

/*begin simulation*/

for(j=30;j<=SO;j=}+5)
{
endb = j;
sigma = 1.0/sqrt(2.0*pow(lO.O,endb/lO.O));

/*initialize system parameters*/

ilk = 0.0;
i2k = phsfix;
refkl = i2k;

t = 1.0;
errkhold = 0.0;

phsk = 0.0;
errk = 0.0;
xcon2 = 16807;/*for RV generation*/
xconl = 2147483647;/*for RV generation*/

sqrerr = 0.0;
sumerr = 0.0;
s = O;

for(k=O;k<=120;++k)
I

/*construct received phase, noise, and transmitted data*/

/*received phase*/
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/*running variance calculation*/

if (k >20)

if (fabs(refkl) < 0.392699)

s=s+ 1;

sqrerr = sqrerr + re/k l're/kl;
sumerr = sumerr + re/k1;

for(n=O;n<uncore;++n)

/* phsk = O.O01*k;*/

/*noise*/

/*

*/

x = rand();

y = rand();
samplel = (x/32767.0)*0.999999;
sample2 = (y/32767.0)'0.999999;

x =ldiv(y,xconl ).rem;
x=labs(x*xcon2);

y =ldiv(x,xcon 1).rem;
y=labs(y*xcon2);

samplel = (x/2147483647.0)'0.999999;
sample2 = (y/2147483647.0)'0.999999;

nik = sigma*sqrt(-2.0*log(1.0-samplel))
*cos(2.0*3.14159265*sample2);

nqk = sigma*sqrt(-2.0*log( 1.0-sample i ))

*sin(2.0*3.14159265*sample2);

/*transmitted data*/

d = rand(); /*d is now divided into 8 regions each
representing a possible xmitted symbol*/

if(d < 4096)
{
imk = 0.923879;

qmk = 0.382683;
!

else if((d >= 4096) && (d < 8192))

t
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imk = 0.382683;
qmk = 0.923879;

else if((d >= 8192) && (d < 12288))
{
imk = -0.382683;
qmk = 0.9238?9;

else if((d >= 12288) &&
{
imk = -0.9238?9;
qmk = 0.382683;
)

else if((d >= 16384) &&
{
imk = -0.923879;
qmk = -0.382683;

else if((d >= 20480) &&
(
imk = -0.382683;

qmk = -0.9238?9;
)

else if((d >= 24576) &&
I
imk = 0.382683;
qmk = -0.923879;

else

{
imk = 0.9238?9;
qmk -- -0.382683;

(d < 16384))

(d < 20480))

(d < 24576))

(d < 28672))

/*end generation part of the simulation, this generated
information will be used for this value of the simulation

counter only*/

/*subtract the reference phase from the received phase*/

pdifk = phsk- refkl;

/*calculate the received symbol values for I and Qbased on
the generated data and noise and the phase difference pdifk*/

ik = imk*cos(pdifk) - qmk*sin(pdifk) + nik;

qk = imk*sin(pdifk) + qmk*cos(pdifk) + nqk;

/*Now implement a phase detector to generate a phase error
signal errk. This implementation performs a circular
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quantization on I and Q.followed by some algebra to develop
the error signal.*/

/*calculate the phase of the received vector. The atan2

function adjusts for the appropriate quadrant.*/

rcvdp = atan2(qk,ik);

/*quantize rcvdp into ihatk and qhatk*/

if ((rcvdp >= 0.0) && (rcvdp < 0.785398))

/* 0 <= rcvdp < Pi/4 */

t
ihatk = 0.923879;

qhatk = 0.382683;

t
else if ((rcvdp >= 0.785398) && (rcvdp < 1.570796))

/* Pi/4 <= rcvdp < Pi/2 */

I
ihatk = 0.382683;

qhatk = 0.923879;
I

else if ((rcvdp >= 1.570796) && (rcvdp < 2.356194))

/* Pi/2 <-- rcvdp < 3Pi/4 */

{
ihatk = -0.382683;

qhatk = 0.923879;
!

else if ((rcvdp >= 2.356194) && (rcvdp < 3.141593))

/* 3Pi/4 <= rcvdp < Pi */

t
ihatk = -0.923879;

qhatk = 0.382683;
}

else if ((rcvdp < -2.356194) && (rcvdp >= -3.141593))

/* -3Pi/4 < rcvdp >= -Pi */

I
ihatk = -0.923879;

qhatk = -0.382683;
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else if ((rcvdp >= -2.356194) && (rcvdp < -1.570796))

/* -Pi/2 > rcvdp >= -3Pi/4 */

{
ihatk = -0.382683;
qhatk = -0.923879;

else if ((rcvdp >= -1.570796) && (rcvdp < -0.?85398))

/* -Pi/4 > rcvdp >= -Pi/2 */

{
ihatk = 0.382683;

qhatk = -0.923879;

else if ((rcvdp >= -0.785398) && (rcvdp < 0.0))

/* 0 > rcvdp >= -Pi/4 */

{
ihatk = 0.923879;

qhatk = -0.382683;
}

/*calculate the phase error errk as a function of ik, qk, ihatk,
and qhatk.*/

errk = -ik*qhatk + qk*ihatk;

/*This is the end of the phase detector*/

/*The next step considers the loop filter and VCO in one
transfer function, as a difference equation. It calculates the
phase of the VCO, refkl, for the next simulation iteration.
refkl is based not only on the error signal, errk, but also on
the state of the integrators that make up the one pole low-pass
filter and the VCO. The filter can be represented by the

function, 1 + a/s. a is one-over-the time constant, RC, of the
filter. The VCO xfer function can be considered as kO/s. kO is

the ratio describing the output frequency of the VCO in terms
of the input error voltage from the loop filter. The filter
integrator initial condition at time k is ilk. The VCO integrator
initial condition at time k is i2k. The integration period is t. In
discrete time these transfer funcitons can be implemented as
follows*/

refkl = i2k + k0*t*errk + ilk*k0*t + a*kO*t*t*errk/2.0;

/*now reset the integrator intial conditions for the next
iteration*/
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i2k = refkl;
ilkl -- ilk + a*t*errk;
ilk = ilk1;

/*printf(" k = %d\n",k);*/

}

meanphs = (sumerr/s);

varphs = sqrerr/s - meanphs*meanphs;

fprintf(oufflle,"\n");

fprint_f(outfile,"E(s)/N(o) = %4.1f_n",endb);

fprintf(outfile,"Mean of error = %10.7f, variance of error =
% 13.10f_n",meanphs,varphs);

fprintf(outfde,"\n");

fprintf(outfile,"The number of samples used in the previous
statistical analysis is: %d\n",s);

fprintf(outfile,"\n");

printf("\n");

printf("Es/No = %4.1f, mean = %f, variance = %f, samples =
%d\n",endb,meanphs,varphs,s);

}
fclose(ouffde);

Both simulations were run with a loop bandwidth-to-symbol rate

ratio of 0.53% and damping factor of 0.7071. The data plotted, in

dB, in Table A-1 indicates the high-SNR loop performs better than

the Leclert & variation in terms of variance of phase error.
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Table A-1. The simulation data for comparing loop designs.

Leclert &

SNR Vandamme

(dB) (variance)
24 -44.271

22 -42.652

High SNR

(variance)
-49.002

-48.365

20 -41.244 -45.642

1 8 -39.642 -42.529

1 6 -37.535 -40.471

1 4 -34.825 -39.095

1 2 -30.965

-25.655 i10
-32.0768

-26.655
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Appendix B

THE 8PSK MAP ESTIMATOR DERIVATION

Extending the MAP estimator result for 8PSK (M=8) is a

simple process. Equations (3-1) through (3-13) are applicable for

any M. The modulation probability density in (3-14) is different

for 8PSK and is stated as

3zr 1 5_ 1

p( Om )= 8t_(Om + 8) + Z(_(Orn + TI+ -_ (_( Ora + TI+ -_ t_( Om + _-_)

+ 1S (Ore __83+ l¢_(Om ___3+ 1S(O m __5__)+ l¢_(Om-_1

(B-l)

The 8PSK likelihood function is

p(R[Oi ) = l p(RlOi,Om = .__.8 3 + l p(_Oi,Om = ___3 + l p(RlOi,Om-

"blp(RlOi,Om=_)'klp(R]Oi'Om=_-_)

(B-2)
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We proceed by inserting (3-12) into (B-2) for all values of 0m. TO

do this the two quantities r1 -s 1 and rE -s 2 must first be analyzed

for the 8 values of Ore. Table B-1 contains this analysis.

Table B-1. Two dimensional noise component analysis.

Ortl

-- lr

8

r1 - s I

r,- cos(O 
r,- cos(O 

r 2 - s 2

r2+_/-Esin(Oi+8)

5rr)r2+_/Esin Oi+--ff-

r2 +'_-E sin( Oi + _-_-)

8 rl-'x/Ec°s(0i - 8) r2+'x/-Esin( Oi -8)

3zr8 r I --_-Ecos(0i - _-_) r 2 + x/-Esin(0i-_)

5/17

8 r, cos(0i 57rr 2 + _/E sin 0i - --if-

7______8 r I - _cos(0i - Z_) r 2 + _/-Esin(0i- -_-_)

Now using Table B-1 it is possible to insert (3-12) into (B-2)

and obtain the likelihood function. The process of obtaining the 8

PSK likelihood function will only be conducted for the first term of

(B-2). The procedure is the same for all the terms in (B-2).
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Inserting the data from Table B-1 for the first modulation phase,

namely when 0m = -E the first term in (B-2) can be stated as
8'

1 0

2
2a 2

e

(r2+'_sin(Oi+8)) 2

2t_ 2
Xe

(B-3)

Completing the square of the exponential arguements in (B-3) and

then combining, results in

r2-2rl_[-Ecos(Oi+8)+Ecos2(Oi+8)

+r2+2r2"_[-Esin(Oi+8)+Esin2(Oi+8]

1 20.2 (B-4)
(A) = _e

By combining and separating like terms (B-4) becomes

2 /r

1 20 .2 (B-S)

(A) = _e

Applying the appropriate trigonometric identities to expand the

sinusoidal terms forms
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r2 +r 2 +E

1 20.2

<A) - 16rcty_'e

-2rl_Ic°s(Oi)cos(8)-sin(Oi)sin(8)]

X e 20.2 (B-6)

2r2_/-E[sin(Oi)cos(8)+cos(Oi)sin(8)]

Re
2a 2

Inserting the equations for r 1 and r2, given in (3-9) resolves (B-6)

into

4+r_+E
1 20.2

(A)- 167rcr_-e

-[ !r(t )_cos(tOct)dt]vr2-E[cos(Oi )cos(8)-sin(O i )sin(8)l

xe
2a 2

[!r(t)_f_sin(tOct )dt ]2a_[sin(Oi )cos(8)+cos(O i )sin(8)]

xe
2o -2

(B-7)

By combining the integrals and distributing the carrier

components within the integrand (B-7) becomes

r?+r_+E
1 2o.2

(A) = 8_ty-------_e

E T cos oct cos o,lcos( )-cosloct sio o, sin( )1].
-si. Oc,,sinlOi,cos()-sinloc,,cos Oi,sin(zl I

xe
20. 2

(B-8)
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Next the trigonometric identities

cos(x)cos(y)- sin(x)sin(y) = cos(x + y)

and
(B-9)

cos(x)sin(y) + sin(x)cos(y) = sin(x + y)

are used to separate the integral in (B-8) into two new integrals.

This new form is

E T
2cos(_]J'_lr(t)cos(O_ct+Oi)dt] ]

\83_T 0 J

2(72

E T
-2sin( tr_E jr(t)sin(tOct+Oi)dt]

k8J'IT o J
2172 (B-IO)

Using the substitution adopted for O PSK, namely

x= r(t)c°S(_ct + Oi)dt
0 _10

and
(B-11)

T

l___-_-- Ir(t)sin(COct + Oi)dt
Y=o._ _To
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reduces (B-10) to

(A) l r? +r2+E (zr_ . (Tr'__ e °StTJX-S'"t,TJy
167roZe (B-12)

Repeating the process for each of the seven remaining terms in

the 8PSK likelihood function is accomplished by changing the

trigonometric coefficients in (B-10) to accomodate the modulation

angle corresponding to each term. Therefore the second term

becomes

r?+rl+e (3ff_ . (31r'_

1 _a2 eC°S_--_)x-sm(-_)Y
( B)= l_2 e (B-13)

Similarly the other six terms are

rl+rl+E (57r_ . (5Jr'_

(C)- 16zccrYel _ e <°s('Yjx-='n('Tjy, (B-14)

r? +r I +E (7rc'_ (7.'1
1 =Z-_2 " c°s/--/x-sin/-z-/Y

za e \8] k_) ,(U)-16zccr_e (B-15)

r? +rl +E (-_'_ :-#r'_
l _ cos/--/x-sin/--/y

20" e t8/ t. 8) ,
(E)- 16tcaye (B-16)
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---w'--- cos/--7-/x-sm/-u--/Y
1 2a" e _ _ j _ _ j , (B-17)

(F)- 16_o._-e

cos/_/x-sm/_/Y1 2a e t 8 ) t 8 / , (B-18)
(G) = _e

r2+r_+E f-7x_ . f-7_r_

1 -_eC°S_--8-)x-sm_--ff-) y.
(H)= _e

(B-19)

All of the trigonometric coefficients in (C) through (H) can be

(8) (_) (_÷) (3÷)written in terms of cos , sin , cos , and sin .

Performing the necessary conversions yields

3g 3_

r2+r2+E - cos(--_-)x -sin (-if-)Y
2a2 e

(B-20)

(") ?)r,_+4 +e -_o_-__-_i,,-_y
2_r2 e

(B-21)

r2, +r2+E f_'_ . (_

':<,2 e_°_t,Tjx+s'nt.iY (B-22)

1 - "2a2 eC°S_--sjx+sm_--8-)y
(F)= 16-_2 e

(B-23)

3_ 37r
r2+r2+E __o_(_r)+_./__)y

2a2 e
(B-24)
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_cos( )x+sin/ )y
2a2 e (B-25)

Now making the assignments

C1 = COS"If, S 1 = sin-- 8

and (B-26)

37r 3_r
C2 = COS--, S 2 = sin--,

8 8

the 8PSK likelihood function can be expressed as

1

p( R Oi ) -161raTe

r_ +r2 +E, -

[e clx-sly + eC2X-s2y + e-C2X-s2y + e-ClX-Sly

L+e clx+sly + eC2X+S2 y + e-C2X+s2y + e-ClX+Sly

(B-27)

Expanding the exponents and rearranging results in

2or 2-- eClXeSly + eClXe-SlY + e-ClXeSly + e-ClXe-Sly 1

Ja

+eC2Xe s2y + eC2Xe-S2 y + e-C2XeS2 y + e-C2Xe-S2 y

(B-28)
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This reduces to

r_+r_+E[( qx +e-qX](eSlY +e-SlY] 1

1 e 2--_--I_e ix _, I.

P(R[Oi)=I_2 _+(eCEX+e-C2X)(eSZY +e-EY)J

(B-29)

Using the definition of the hyperbolic cosine function, the 8PSK

likelihood function becomes

1 2_2

P( RIOi) -161rcr_ "e
[cosh(ClX)Cosh(slY ) + cosh(c2x)cosh(s2Y)]"

(B-30)

Next the log likelihood function is obtained and can be stated

ln[p(RlOi)]=ln

+ In

rl2 +r22 +E l

1 - 20.2

cosh(ClX) cosh(slY)+ cosh(c2x)cosh(s2Y)]

(B-31)

Taking the derivative of (B-31) with respect to 0i and noting that

the first term in the log likelihood function will equate to zero in

the derivative, the MAP estimator equation is found. The first step

in computing the derivative is to apply the chain rule yielding
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30_

a[cosh(c,x) osh(sly)+co h(c:x) osh(s:s)]

cosh(c 1x )cosh(s I y) + cosh(c 2 x)cosh( s2y )

(B-32)

Now taking the derivative of the products results in

°3{ln[p(RlOi)]} _

30i

cosh(sly ) _[ c°sh(clx)] cosh(ClX ) 03[c°sh(sly)]
O0 i + 30_

+cosh(s2y) 0[cosh(c2x)] +c°sh/CEX)" ,3[cosh(s2__ .v)]
O0 i OOi

cosh( C1X)cosh(slY ) + cosh( c2x )cosh( s2Y )

(B-33)

Applying the chain rule to each of the derivatives on the right

side of (B-33) forms

°3{ln[p(ROi)]} _
m

dtOi cosh

a[x]
C1 cosh(slY)sinh(ClX)_:-_

Oui

x smhs 'O[Y]
+SlCOSh(c 1 )" (ly)-_- i

+c2c°sh(s2Y)sinh(c2X)_o ]

, O[y]
+s2 cosh(c2x)sinh(s2Y)-_i ]

ClX)Cosh(slY ) + cosh(c2x)cosh(s2Y )"

(B-34)

Using (B-11) it is noted that
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_
_y

¢_0 i

and (B-35)

Substituting (B-35) into (B-34) yields

I -clyc°sh(sly)sinh(clx)+slxcOsh(clx)sinh(sly) l

O{ In[ p(l_Oi )]} = L-c2Y cosh(s2Y)sinh(c2x)+ s2x cosh(c2x)sinh(s2y)J.

O0 i cosh(ClX)C°sh(slY)+ cosh(c2x)cosh(s2Y)

(B-36)

Writing (B-36) as a sum of two fractions yields

O{ln[p( R[O,)]} _ _qycosh(s,y)sinh(ClX ) + s,x cosh(qx)sinh(slY)

O0i - cosh(ClX)Cosh(slY)+ cosh(c2x)cosh(s2Y)

-c2Ycosh(s2y)sinh(c2x) + s2xcosh(CEX)sinh(s2Y)

+ cosh(ClX)COsh(slY ) + cosh(c2x)cosh(s2Y )

(B-37)
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cosh(ClX)Cosh(slY)

Multiplying the first fraction by cosh(qx)cosh(s_y) and the second

cosh(c2x)cosh(s2Y )

fraction by cosh(czx)cosh(s2y) forms the sum

O{ln[p(ROi)]}

aOi

[ -clY COsh( sl y )sinh( ClX ) + SlX COsh( ClX )sinh( sl y )

= | cosh(c lx)cosh(s ly)

cosh(ClX) cosh(sly)+ cosh(c2x)cosh(s2Y )

cosh(ClX)Cosh(sly)

I -c2Yc°sh(s2Y)sinh(c2x) + s2x c°sh(c2x)sinh(s2y) ]"

| cosh(c2x)cosh(s2y ) I

+[ c°sh(ClX)C°sh(sly)+c°sh(c2x)c°sh(s2y) I

L cosh(c 2x)cosh(s 2y) J

(B-38)

This reduces to

c}{ln[p( RIOi )]} = sl x tanh(sly)_ cly tanh(ClX), s2x tanh(s2Y)_ c2Y tanh(c2x)

30 i 1 + c°sh(c2x)c°sh(s2y)

cosh(ClX)Cosh(sly )

1-_ c°sh(c2x)c°sh(s2y)

cosh(c2x)cosh(s2y )

(B-39)

Using the same approach for completing the MAP estimator as

was done for BPSK and QPSK, the right side of (B-39) is equated to

zero yielding

236



slxtanh(slY)- clytanh(clx)+
cosh(c2x)cosh(s2Y)

1+_osh(_:)cosh(_,Y)

s2xtanh(s2Y)- c2Ytanh(c2x)_=O.
cosh(c,x)cosh(s,Y)

1+cosh(c:)cosh(s_y)

(B-40)
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Appendix C

THE 16PSK MAP ESTIMATOR DERIVATION

Extending the MAP estimator result for 16PSK (M=16) is a

simple process. Equations (3-1) through (3-13) are applicable for

any M. The modulation probability density in (3-14) is different

for 16PSK. Writing p(Om) for 16PSK as a summation while

preserving the positive and negative references for the

modulation points, as was done for the previous PSK modulations

formats, results in

P(Om)= _,--5(Ore
n=_816 k,

(C-1)

The 16PSK likelihood function can be expressed in the same

manner, namely,

n=7 1 t" (2n + 1)_.']
p(ROi):n_=_s-_P( ROi'Om: 16 )"

(C-2)

We proceed by inserting (3-12) into (C-2) for all values of 0m. To

do this the two quantities r1-s I and r2 -s 2 must first be analyzed

for the 16 values of 0m. Table C-1 contains this analysis.
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Table C-1. Two dimensional noise component analysis.

16

37r

16

5¢r

16

7_

16

97r

16

llTr

16

137r

16

157r

16

16

3_

16

5_

16

77r

16

91r

16

llTr

16

137r

16

15zr

16

r I - s1

r,
r 1 -_-Ecos 0 i +

k

(
r 1 - _ cos| 0i + |

16)\

rI - alE cos(Oi + q-6"j91r_

r I - _ cos(-Oi + 117r_16 J

' 137r_
r 1 - _/Ecos 0 i + 16 )

\

r ! - _fEcos(0i + 15n:)16)

r 1 -%/-Ecos(0i--_6)

r I - _cos 0 i -
k

r 1 --"x/Ecos(0i-_-_)

' llTr_
r 1 - _ cos 0 i - ---_-j

13:n:_r 1 - -_jEcos 0 i 16 ,

r 2 + _ sin(- 0 i + 51r)16J

r 2 + _/E sin 0 i +

r2 +'x[-E sin(Oi +-_6 )

¢

r 2 + _JEsin 0i + 11_')
,. 16)
g

+ 137r_r 2 +_sin 0 i
_. 16 )

( +l ,qr2 + _ sin 0 i 16 )

3_r2+_/Esin Oi--" _

r2+ sin(0,- )
r 2 +_/Esin Oi _ 91r

\

11_:'r 2 +_sin 0 i

157r_r I - _ cos 0 i --_

16,

13_ _(
r2 + _-Esin_0i 16

r 2 + -x/-Esin(0i - 15_16.)
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Now using Table C-1 it is possible to insert (3-12) into (C-2) and

obtain the likelihood function. The process of obtaining the 16 PSK

likelihood function will only be conducted for one term of (C-2).

The procedure is the same for all the terms in (C-2) and the

results will be presented after the derivation for this first term.

Inserting the data from Table C-1 for the modulation phase
/17

corresponding to Om =-_, the related term in (C-2) can be stated

as

(A) = p R Oi,Om = = 32n:O.2

(,, 4);
2o -2

e

(r2+'_-Esin(Oi+-_61) 2

Xe 2°'2

(C-3)

Completing the square of the exponential arguments in (C-3) and

then combining, results in

+r2+2r2" [-Esin(fli+ 6)+Esin2(Oi+ 661
1 2a2 (C-4)= e

(A) 32 Zt.O.2

By combining like terms (C-4) becomes

r?+r2+E-2rlqr-Ecos(Oi+_66)+2r2x[-Esin(Oi+_66)

1 2a2 (C-5)
- e

(A) 32/1:O"2
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Applying appropriate trigonometric identities to expand the

sinusoidal terms forms

1 2a2
= e

(A) 32Jr°" 2

-2rlfl-E[cos(Oi)c°s(_661-sin(ei)sin(_661J

×e 202 . (C-6)

Xe
2a 2

Inserting the equations for r I and r2, given in (3-9) resolves (C-6)

into

r?+q+E
1 2o.2

(A)- 32/rO" 2 e

-[ !r(t )_--2Tcos(tOct )dr ] 2x/TE[cos(0i )cos(_6 )-sin(0/)sin( _6)1

Re
2(7 2

T 2 )cos --_ +cos(0i)sin tr

Re
2a 2

(c-7)

By combining the integrals and distributing the carrier

components within the integrand (C-7) becomes
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-sin(OJct )sin(O/,cos( _6 ) -sin(O_ct) cos(Oi )sin( _6 IIdtl

>(e 2ff 2

(C-8)

Next the trigonometric identities

cos(x)cos(y)-sin(x)sin(y) = cos(x + y)

and
(C-9)

cos(x)sin(y) + sin(x)cos(y) = sin(x + y)

are used to separate the integral in (C-8) into two new integrals.

This new form is

[l-2cos ,-_]a[_T_r(t)cos(O)ct+Oi)dtl1o./'/1 0

2" lr E T .
r?+r 2+E - sln(i6 r(t)sln(C°ct+Oi)dt

1 2a e [ 2a 2
(A)-32_a 2e _ - _ (C-lO)

Using the substitution adopted for QPSK, namely
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_T
1 jr(t)co,( Oct+e,)dt

X -- "_" 0

and
(C-11)

y= r(t)sin(tOct + oi)at
0

reduces (C-IO) to

_ , "-_ cos/--/x-sm/TTlY
1 2o'2 e k16; kioJ .

(C-12)

Repeating the process for each of the fifteen remaining terms in

the likelihood function is accomplished by changing the

trigonometric coefficients in (C-10) to correspond to the

modulation angle for that term. Therefore the second term

becomes

I -_eC°S(_-_) x-sin/_6)y .

(B}- 32_a_ -e

Similarly the other fourteen terms are

-_eCOS(_-_) (_6)y-" -
X Sill

1
(C)= _e

(C-14)
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1 r2+r2+E {77r) . (7_'_

-- - cos -- x-sin -- y(D)- 321rcrTe 2a2 e [,16) [,16) (C-15)

1
(E) = e

32/rcr 2

r? +r2+E f91r'_ . (9Zr_
COSl .-77/x-sm/-7-7/Y

2G e \lO) \1o) (C-16)

1 r?+r_+E cos( 1ltr)x_sin( 11 tr _y

e 2a_ e _. 16 ) \ 16 )
(F)= 32 n'cr2

(C-17)

1
(G)- e

32/ro -2

r? +r2 +E cos(13_x_sin(131r_y

2a'_ e _, 16 J \ 16 ) (C-18)

r2+r2+E cos(151r)x_sin(151r)y

2°"_ e k 16 J k, 16 ) , (C-19)

r? +r22 +E f _'_ . f Ir'_

2o---_eCOSUg)x-_,ncgjy, (C-20)

r? +r2+E f 37f'_ . f 3_

1 _ cos/-.-7-7IX-Sin/-.-77-/y
2o" e \ l0 ] \ 10 J

(J) - 32n'°" 2 e
(C-21)

r_+r_+E f 5rc'_ . ( 5_'_

20.---2 eC°Sl,- 1--6-)x-sm_- l"-6)Y, (C-22)

1

(L)= 32zccrTe

99
r_+r_+E ( 7_'_ . (71r)

-- COS --- x-sin --- y
2a2 e / 16 ) _, 16) (C-23)
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r2+r22+E ( 9_r'_ . ( 9_r_

la2 eC°S[--i'gjx-smt.--i-ff Jy (C-24)

r2+r2+E ( 11_ . (lllt)
- , COS -_ x-sin --- y

1 2cr2 e t. 16 ) t. 16 )

(N)- 32n.o._-e
(c-25)

r_+r_+E : 13_3 . ( 13g]

1 "20 .2 -eC°S[--C6-jx-s'n(--i-ff) x (C-26)
(O) = 321ro._e

1 2_2 'eC°St--g -)x-s'nt---_jy (C-2 7)
(P) = 32/rcr-----_e

All of the trigonometric coefficients in (C) through (P) can be
7r . 37r

written in terms of cos(_), sin(_6), cos(_-_/, and sm(_).

Performing the necessary conversions yields

r? +r2+E. . (3ff_ (3_

2a2 eSln[-_)x-c°s_-_) y, (C-28)

r? +r 2 +E ( _ "_ ( _ "_
• % sin/--/x-cos/z_/Y

2az e \16) Lib) , (C-29)

1

(E>= _e

r2+r2+E _ sin (.i.._)x _ cos ( .i.._) y
2a2 e (C-30)

r21+r22+E . (3_r'_ :3_

1 20-2 -smt--_)x-c°st-_)Y

(F)= 32zrde e
(c-31)
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1 r? +r 2 +E -cos(iod _ _x-sin(\,o] _/Y

(G) = 32zra2 e 2a2 e
(C-32)

1

(H) = 32_ro._-e

r2+r_ +E _cos(_6)x_sin(_6)y
20"2 e (C-33)

1

(1) = 32/ro._-e

r?+r2+E cos(_6)x+sin(_6 ly
2a2 e (C-34)

1

(J)=_e

'9"9

cos/.-=Ix+sin/-:--;-./y

2cr" e \lOJ \lbJ (C-35)

r 2+r2+E {31r_ (31r_
' sin/-7-7/x+cos/-77/Y

2a" e \1o) kio) (C-36)

'99

r_ +r_ +E . f _Z'_ f _ _
sm/77/x+cos|z-7/y

20"" e klO) klO] (C-37)

r?+r2+E _ sin(_6)x+cos(_6)y
20"2 e (C-38)

r 2 +r 2 +E -sin _)x+cos(_y
2°'2 e (1o/ k _o2 (C-39)

1

(O) = 32/rcr_-e

r? +r2 +E -cos 3T-ff_]x+sin( 3-_. _y

2°'2 e /lo] \loJ , (C-40)
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2¢72 e (C-41)

Now making the assignments

lr 7r

C1 -" COS--, S1 = sin-
16 16

and (C-42)

3/r 3/r

c2 = cos_-, s2 = sin _,

the 16PSK likelihood function can be expressed as

1 2or2

P(RIOi) = 32 zr6_ -e

-e clx-sly -t- e c2x-s2y + e s2x-c2y + e slx-cly

-I-e -slx-cly -I- e -s2x-c2y -t- e -c2x-s2y -I- e -clx-sly

.+.e clx+sly 4- e c2x+s2y 4- e s2x+c2y -I- e slx+cly

•.I-e -slx+cly -I- e -s2x+c2y -I- e -c2x+s2y 4- e -clx+sly

(C-43)

Expanding the exponents and rearranging, yields

1 2a2
= ep(RIo,)

"eClXe sly + eClX e -sly -t- e-ClX e sly -I- e-ClX e -sly

+eC2X e s2y + eC2X e -s2y + e-C2X e s2y + e-C2Xe -s2y

+eSlXe cly -I- eSlXe -cly + e-SlX e cly + e -slxe-cly

+e S2X e c2y -I- eS2X e -c2y + e-S2X e c2y -I- e-S2Xe -c2y
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(C-44)

This reduces to

1 2o.2

P( R]Oi ) = 327tort e

"(eC,X+e-C,X)(eS,Y+e-S,y)
+(e_X+e-_X)(e'2Y+e-_2Y)
+_,x+e-,,Xl(e_,y+e-_'Y)
+(e'_x+e-S_Xt(e_Y+e-_Y)

(C-45)

Using the definition of the hyperbolic cosine function, the 16PSK

likelihood function becomes

4+r_+E
Ta2 [c°sh(ClX)C°sh(sly)+cosh(c2x)cosh(s2y) ]

L+cosh(slx)cosh(qy)+ cosh(szx)cosh(c2y)J"

(C-46)

Next the log likelihood function is obtained and can be stated

r?+,_+El
In

"cosh(c lx)cosh(s ly)

+cosh(c2x)cosh(s2Y )

+cosh(SlX)Cosh(cly)

+cosh(s 2x)cosh(c2y )

(C-47)
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Taking the derivative of (C-47) with respect to 0i and noting that

the first term in the log likelihood function will equate to zero in

the derivative, the MAP estimator equation is found. The first step

in computing the derivative is to apply the chain rule yielding

o3[cosh(ClX)Cosh(slY)+ cosh(c2x)c°sh(s2Y) ]

L+cosh(SlX)COsh(clY) + cosh(s2x)cosh(c2Y) j

t_{ln[p(l_O i ) ]} OOi (C-48)

cosh(qx)cosh(slY)+ cosh(c2x)c°sh(sEY)OOi

+cosh(slx)cosh(clY ) + cosh(s2x)cosh(c2Y)

Now using the rule for the derivative of a product results in

., ,t?[c°sh(ClX)] ., ,O[c°sh(slY)]
cosh s y _ .- + cosn!,qx) .,,,

( 1 ) Ovi o_

,, ,0[cosh(, y)+ cosntc2x J
t_O i t_Oi

., , O[c°sh(SlX)] ., , O[c°sh(clY)]
+ costa, six)

+c°sntqY) O0 i t_121i

I ,, x tg[c°sh(s2x)] ,, x O[c°sh(c2Y)]

O{ ln[ p( RlOi ) ]} = [+c°sntc2y ) t?Oi + c°sm's2x ) olOi

o30i cosh(ClX)C°sh(slY)+ cosh(c2x)c°sh(s2Y)

+cosh(slx)cosh(clY ) + cosh(s2x)cosh(c2Y)

(C-49)

Applying the chain rule to each of the derivatives on the right

side of (C-49) forms
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O[x]
C 1 cosh(slY)sinh(clx)-w2---_

Oui

h s ,O[y]
+s,cosh(c,z)sin( ,y)-_

a[x]
+c 2 cosh(s2y)sinh(c 2x)_a-_

Ovi

, O[y]
+s 2 cosh(czx)sinh(szy )-

OOi

O[x]
+ s I cosh( clY )sinh( s 1x ) _-------

30i

+q cosh(SlX)sinh(qY)_

O[x]
+s 2 cosh(czy)sinh(szx )-

30i

lnh c "3[y]
+c2cosh(s2x)s( 2y)-g-_

- cosh( c Ix)cosh(slY ) + cosh(c2x)cosh( s2Y )

+cosh(SlX)Cosh(clY)+ cosh(s2x)cosh(c2Y)

(c-5o)

Using (C-11) it is noted that

O[x]_ -y

and (C-51)

O[y] _

Substituting (C-51) into (C-50) yields
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_
00i

-clycosh(sly)sinh(ClX)+ slxcosh(clx)sinh(sly)

-c2Y cosh( s2y)sinh (czx) + s2x cosh( c2x)sinh (szy)

_slycosh (cly)sinh (six ) + ClX cosh( s 1x)sinh( cly )

_s2Ycosh (c2y)sinh (SzX) + CzX cosh(s2x)sinh (czy)

cosh(ClX) cosh(slY)+ cosh(c2x)cosh (sEy)

+cosh(SlX)Cosh(clY ) + cosh(s2x)cosh(czY )

(C-52)

Writing (C-52) as a sum of four fractions yields

O{ln[p(l_O i)]} _ -clycosh(slY)sinh(Cl x)

O0 i

+ slxcosh(clx)sinh(slY)

"cosh(ClX)Cosh(sly ) + cosh(c2x)cosh(s2y ) ]

+cosh(SlX)Cosh(cly)+ cosh(s2x)cosh(c2Y)J

+
-c2ycosh(s2y)sinh(c2x) + s2xcosh(c2x)sinh(s2Y )

-c°sh(ClX)C°sh(slY)+ c°sh(c2x)c°sh(s2Y) 1

+cosh(slx)cosh(clY ) + cosh(SEX)Cosh(cEY)J

--S 1y cosh( c 1y ) sinh( s Ix ) d- c 1x cosh( s 1x )sinh( c Iy)

cos Ic xlcos I,,y)+cos Ic  lcos I  yl]
+cosh(SlX)Cosh(clY ) + cosh(SEX)Cosh(c2Y)J

+
-s2ycosh(c2y)sinh(s2x) + c2xcosh(s2x)sinh(c2Y)

cosh(ClX)COsh(slY) + cosh(c2x)cosh(s2Y) ]

+cosh(slx)cosh(clY ) + cosh(s2x)cosh(c2Y)J

(c-53)
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cosh(c,x)cosh(s,y)
Multiplying the first fraction by cosh(qx)cosh(sly)' the second

cosh(c2x)cosh(,2y) cosh(s,x)cosh(c,y)
fraction by cosh(c2x)cosh(s2Y ), the third fraction by cosh(SlX)Cosh(clY ) ,

cosh(s x)cosh(c2y)
and the fourth fraction by cosh(s2x)cosh(c2y ) forms the reduced sum

m

t_O i

+

-clY tanh(c Ix) + sIx tanh( slY )

1-I c°sh(c2x)c°sh(s2Y) +

cosh(c lx)cosh(s ly)

cosh(SlX)Cosh(cly ) cosh(s2x)cosh(c2y)

cosh(clx)cosh(slY ) + cosh(clx)cosh(slY )

-c2y tanh(c2x) + s2x tanh(s2y )

cosh(ClX)Cosh(slY)

cosh(c2x)cosh(s2Y ) + 1

cosh(s lx)cOsh(cly )
-+ t

cosh(s2x)cosh(c2Y )

cosh(c2x)cosh(s2Y ) cosh(c2x)cosh(s2Y)

-s 1y tanh(s! x) + C1X tanh( c 1y)

cosh(ClX)Cosh(slY ) cosh(c2x)cosh(s2Y)

cosh(SlX)Cosh(clY ) + cosh(SlX)Cosh(clY )

cosh(s2x)cosh(c2Y)
+1+

cosh(s!x)cosh(clY )

-s2Y tanh(s 2x ) + c2x tanh( c2Y )

cosh(c lx)cosh(s ly)

cosh(s2x)cosh(c2Y ) +

cosh(c 2x)cosh(s2y ) '

cosh(s2x)cosh(c2Y )

+ c°sh(six)c°sh(clY) t-1

cosh(s2x)cosh(c2Y )

(C-54)
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Using the same approach for completing the MAP estimator as

was done before for BPSK, QPSK, and 8PSK, the right side of (C-54)

is equated to zero

+

-clytanh(clx)+ slxtanh(slY)

cosh(SlX)Cosh(cly ) cosh(s2x)cosh(c2y)[
' cosh(clx)cosh(slY)j+ cosh(c2x)cosh(s2Y)__

cosh(ClX)COsh(slY ) cosh(clx)cosh(slY)

-c2Y tanh(c 2x) + s2x tanh(s2Y )

cosh(ClX)Cosh(slY ) cosh(SlX)C°sh(clY) cosh(s2x)cosh(c2Y)

cosh(c2x)cosh(s2Y ) + 1+ cosh(c2x)cosh(s2Y) _ cosh(c2x)cosh(s2Y )

-slytanh(SlX ) + clxtanh(cly )

cosh(ClX)Cosh(slYcosh(c2x)cosh(s2Y)cosh(s2x)cosh(c2Y)
c°sh(SlX)C°sh(clY)+ cosh(SlX)COsh(clY) I-1-1cosh(SlX)Cosh(clY)

-s2Ytanh(s2x)+c2xtanh(c2Y) =0

cosh(c2x)cosh(s2Y) cosh(SlX)Cosh(caY)]_.cosh(s2x)cosh(c2Y)+1
-cosh(ClX)COsh (slY)

cosh(s2x)cosh(c2Y ) + cosh(s2x)cosh(c2Y )

(c-55)

and it is noted that

E T
x = 4 _-_ _r(t)cos(COct + 0o )dt

a _To

and (C-56)

E T
y = -_,_-_-- _r(t)sin(Ogct + Oo)dt.

a _To

253



Appendix D

EQUIVALENT NOISE DATA AND SIMULATION SOURCE CODE

In Chapter 5 the equivalent noise in the high-SNR loop was

discussed. To verify the derived numerical approach, it was

compared to the theoretical result for QPSK (5-18). It was then

applied to 8PSK and 16PSK. The numerical calculations were

executed with the use of MATLAB source code. The 8PSK source

code is presented here for review:

%This program calculates the variance of the %equivalent
noise term in the error signal of the 8PSK %HIGH-SNR MAP
loop.

clear

format long

%Test EsNo

EsNo=lO;

%sigma2 is the I or O_channel noise variance out

%of either of the integrators

sigma2= 1/(2*IOA(EsNo/IO));

%k is the constant out in front of the exponents in the
%double integral for the equivalent noise calculation.

k= 1/( 2*3.14159*sigma2);

%ke is the constant in the exponent

ke=l/(2*sigma2);

%Clear the variable that tallies up the volume

volume = 0;

%To minimize computation time special measures were
%taken to ensure that the resolution of the integration
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%was "fine" enough but not more than was necessary.
%Basically, the calculation was repeated, increasing the
%resolution each time, until the change in volume

%dropped below 0.1 percent.

%Set the length of one side of a pixel in the integration

%grid. This is the integration resolution

delta = .0 5;

%Begin the double loop that integrates across the grid

for i=1:281,

for j=1:281,

%Convert the matrix indices to bilateral coordinates
%that are designed to minimize the computation time
%needed. This minimization was done prior to this
%code being run. The size of the grid is designed so as
%to contain 99.9 percent of the volume of the Gaussian

%probability mountain. The size of the grid is
%therefore dependent on the SNR. Note that the
%Gaussian probability mountain is centered at the zero

%phase, modulation point. The ranges over which x
%and y are varied are the results of this minimization

%process.

%x range from -6 to 8

x= (j - 121 )*delta;

%y range from 7 to -7

y=(141-i)*delta;

%As the double loop sequences through each of the
%locations in the x,y plane (the grid) the following if-
%thens assign the data estimates for calculating the

%equivalent noise. Actually the square of I and of Q
%are needed as is the inner product

if (y>=-0.41421*x)&(y<0.4142 l'x),
ihat2=l.0;

qhat2 =0.0;
ihatqhat=0.0;

elseif (y>=0.4142 l*x)&(y<2.4142 l'x),
ihat2=0.5;

qhat2=0.5;
ihatqhat=0.5;

elseif (y>=2.4142 l*x)&(y>-2.4142 l'x),
ihat2=0.0;
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qhat2= 1.0;
ihatqhat=0.0;

elseif (y<=-2.4142 l*x)&(y>-0.4142 l'x),
ihat2=0.5;
qhat2=0.5;
ihatqhat=-0.5;

elseif (y<=-0.41421*x)&(y>0.4142 l'x),
ihat2-- 1.0;
qhat2=0.0;
ihatqhat=0.0;

elseif (y<=0.41421*x)&(y>2.4142 l'x),
ihat2=0.5;

qhat2=0.5;
ihatqhat=0.5;

elseif (y<=2.41421*x)&(y<-2.4142 l'x),
ihat2=0.0;
qhat2=l.0;
ihatqhat=0.0;

else,

end

ihat2=0.5;
qhat2=0.5;
ihatqhat=-0.5;

%At location x,y calculate the joint noise density %function

c--exp(-ke*(y)A2)*exp(-ke*(x- 1.0)A2);

%Calculate the square of the equivalent noise term

da(i,j) = ((y)A2*ihat2)+((x-l.0)A2*qhat2)
da(i,j) = da(i,j)-(2*(y)*(x-l.0)*ihatqhat);

%Multiply the two together and then by the constant k

d -- da(i,j)*k*c;

%"d" is the magnitude at any point in the grid. It needs
%to be mulitiplied by the area of pixel to represent a
%volume element. However, to save computation this
%final step is withheld until the end

%Accumulate the "volume" for the variance calculation

volume = volume + d;

end
end

%Multply by the pixel area and calculate the variance
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var= 10*log 10 (delta* delta*volume);

%Save data

save dataout

The theoretical and numerical data, plotted in Figure 5-1 and

Figure 5-9 is presented here, in dB, in Table D-1 and Table D-2.
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Table D-1. The first set of MPSK equivalent noise variance data.

SNR Data Data

BPSK QPSK QPSK 8PSK 16PSK

Theoretical Theoretical Numerical Numerical Numerical

Data Data Data

(dB) (variance) (variance)
-5.000 2.000 -0.719

-3.000 0.000

(variance)
-0.716

(variance)
-2.648

-2.126

(variance)
-3.391

-4.500 1.500 -1.079

-4.000 1.000 -1.433 -1.430 -3.041 -3.626

-3.500 0.500 -1.782
-2.123 -3.434 -3.887

-2.500 -0.500 -2.468
-2.000 -1.000 -2.807 -2.803 -3.843 -4.185

-1.500 -1.500 -3.145

-1.000 -2.000 -3.484 -3.479 -4.279 -4.532

-0.500 -2.500 -3.825

0.000 -3.000 -4.169 -4.165 -4.758 -4.939

0.500 -3.500 -4.519

1.000 -4.000 -4.876 -4.876 -5.303 -5.425

1.500 -4.500 -5.242
2.000 -5.000 -5.618 -5.618 -5.898 -5.98

2.500 -5.500 -6.004
-6.578 -6.6283.000

3.500

-6.000

-6.500
-7.000

-7.500

-8.000
-8.500

4.000

-6.404

-6.816

-7.241

-7.679

-8.129

-8.591

4.500

-6.404

-7.241

-8.1295.000

-7.34

-8.179

-7.368

5.500

-8.193

6.000 -9.000 -9.062 -9.062

6.500 -9.500 -9.542
7.000 -10.000 -10.029 -10.029

7.500 -10.500: -10.520

8.000 -11.000 -11.015 -11.015 -11.0171 -11.017
8.500 -11.500 -11.513

-12.011 -12.011 -12.011 -12.0119.000 -12.000

9.500 -12.500 -12.511
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Table D-2. The second set of MPSK equivalent noise variance data.

BPSK

Theoretical

SNR Data

(dB)
10.000

10.500

(variance)
-13.000

-13.500

11.000 -14.000

11.500 -14.500
12.000 -15.000!

-15.50012.500

13.000

13.500:

14.000

-16.000

-16.500

-17.000

QI=SK
Theoretical

Data

(variance)
-13.010

-13.510

-14.010

-14.510

-15.010

-15.510

-16.010

-16.510

-17.010

14.500 -17.500 -17.510_

15.000 -18.000

15.500 -18.500

-19.000

-19.500
-20.000

-20.5001

-21.000

-21.500

16.000
16.500

17.000

17.500

18.000

18.500

19.000

19.500

20.000

-22.000

-22.500

-23.000

CPSK
Numerical

Data

(variance)
-13.010

-18.012

8PSK

Numerical

Data

(variance)
-13.01

-18.078

-23.012 -23.11

16PSK
Numerical

Data

(variance)
-13.01

-18.087

-23.097
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Appendix E

PHASE DETECTOR GAIN DATA AND SIMULATION SOURCE CODE

In Chapter 5 the phase detector gain in the high-SNR loop

was discussed. To verify the derived numerical approach, it was

compared to the theoretical result for O PSK (5-64). It was then

applied to 8PSK and 16PSK. The numerical calculations were

executed with the use of MATLAB source code. The 8PSK source

code is presented here for review:

%This code generates the 8PSK phase detector gains
%for a high-SNR MAP loop

clear

%Set the number of points to integrate the entire
%phase probability over

k=20000;

snrdb 10.0;

snr= 10^(snrdb/10);

%Select Phase error that the phase detector is
%evaluated at

psi=O.001;

%Clear storage variables

popsk=[0 0 0 0 0 0 0 0];

%Start counter that integrates across the density

for thetao=-k: 1 :k;

%Create phase variable from counter (+/- pi)

theta=thetao*pi/k;

%The next three equation all combine to represent the
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%density of the phase

p l=2.sqrt(snr.pi)*cos(theta+psi)*exp(snr*cos(theta+psi)*c°s

(theta+psi));

p2--.5"( l_erf(-sqrt(snr)*cos(theta+psi)));

p=(1/2/pi)*exp(-snr)*(l+pl*p2);

%Now decide which decision region to accumulate the

%density component in

if (theta<0.392699082)&(theta>---0.392699082),
popsk(1)=popsk(1)+P;

elseif (theta> =0.392699082 )& (theta< 1.178097245 ),
popsk(2)=-popsk(2)+P;

elseif (theta> =-1.178097245 )& (theta< 1.963495409),

popsk(3)=popsk(3)+P;
elseif (theta>= 1.963495409)&(theta<2.748893572),

popsk(4)--popsk(4) +P;
elseif (theta>=2.748893572)l(theta<-2.748893572),

popsk(5)-=popsk(5)+P;
elseif (theta>=_2.748893572)&(theta<- 1.963495409),

popsk(6)-_popsk(6)+P;
elseif (theta>=-1.963495409)&(theta<- 1.178097245 ),

popsk(7)=popsk(7)+P;

else,
popsk(8)=popsk(8)+P;

end

end

%Having accumulated the probabilities for each of the
%decision regions they must be scaled so that their

%total equals unity

po 1 =pi/k*popsk( 1 );
po2=pi/k*popsk(2);
po3=pi/k*popsk(3);
po4=pi/k*popsk(4);
po5=pi/k*popsk(5);
po6=pi/k*popsk(6);
po7=pi/k*popsk(7);
po8=pi/k*popsk(8);

%These probabilities are now used to compute the

%phase detector characteristic output

pdo2=sin(psi)*po l+sin(psi+pi/4)*po2;
pdo2=pdo2 +sin(psi+pi/2)*po3+sin(psi+ 3*pi/4)*p°4;
pdo2=pdo2+sin(psi+pi)*po5 +sin(psi+5*pi/4)*p°6;
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pdo2=pdo2+sin(psi+3*pi/2)*po7+sin(psi+7*pi/4)*po8;

%The gain is the phase detector characteristic output
%divided by the phase error. Also note that the square
%of the gain is what is desired

alpha2--20*logl0(pdo2/psi);

%Save the data

save 8pskdata;

The theoretical and numerical data, plotted in Figure 5-11 and

Figure 5-17 is presented here, in dB, in Table E-1 and Table E-2.
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Table E-1. The first set of MPSK phase detector gain data.

st_

BF_

Theoretical Theoretical _lumerical

Data Data

(dB) (variance)
0.000 -1.486

0.500

1.000

1.500

2.000

2.500

3.000

-1.251

-1.037

-0.846

-0.677

-0.531

3.500
4.000 -0.220
4.500 -0.154

5.000,

5.500

6.000

-0.104

-0,068

-0.042

-0.0246.500
7.000 -0.014

7.500

8.000
8.500

9.000

-0.007

-0.003

-0,002
-0.001

9.500 0.000

10.000 0.000

10.500 0,000

11,000 0.000

11.500 0.000

12,000 0.000

12.500

13.000

13.500

14.000

14.500

0.000

0.000

0.000

0,000

0,000

(variance)
-14.033

-12.832

QPSK 8PSK 16PSK

Data

(variance)
-14.029

-11.663 -11,660

-10.533

-9.442 -9.440

-8.396

-7,399 -7.397

-6.454
-5.566 -5,564

-4,739
-3.976 -3.974

-3.281!

-2.657 -2.656

-2.106
-1.628 -1.627

-1.224

-0.891 -0.890

-0.625
-0.420 -0.420

-0.269

-0.049

-0.024

-0.011

-0.004

-0.002

-0.001

0.000
0.000

-0.163

-0,049

0.011

0,002

Numerical _lumerical

Data Data

(variance) (variance)

-42.790

-37.067

-31,609

-26.469

-21.699

-17,350

-13,465

-10.080

-0.868

-26.38£

-20.37[
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Table E-2. The second set of MPSK phase detector gain data.

BPSK QPSK QPSK 8PSK 16PSK

Theoretical Theoretical Numerical Numerical Numerical

SNR Data Data Data Data Data

(dB)
15.000

(variance) (variance)
0.000 0.000

(variance) (variance) (variance)
-0.364 -11.162

15.500 0.000 0.000

16.000 0.000 0.000 -0.121 -7.803

16.500 0.000 0.000
17.000 0.000 0.000 -0.030 -5.166

17.500 0.000 0.000

18.000 0.000 0.000 -0.005 -3.177
18.500 0.000 0.000

19.000 0.000 0.000 0.000 -1.769

19.500 0.000 0.000

20.000 0.000 0.000 -0.861

20.500 0.000 0.000

21.000 0.000 0.000 -0.350

21.500 0.000 0.000

22.000 0.000 0.000 -0.112

22.500 0.000 0.000

23.000 0.000 0.000 -0.026

23.500 0.000 0.000
24.000 0.000 0.000 -0.004

24.500 0.000 0.000

0.00025.000[ 0.000 : 0.000
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Appendix F

MPSK VARIANCE OF PHASE ERROR RESULTS

In Chapter 6 the equation that describes the variance of the

phase error was discussed. Results were presented graphically.

The components of the equation and the variance itself are

tabulated here. Equation (6-7) is the equation used for computing

the variance. Tables F-1 and F-2 contain the BPSK data for the 4

selected high-SNR loop bandwidth-to-symbol rate ratios. Table F-

3 contains the QPSK variance data. The 8PSK numerical variance

data is tabulated in Table F-4 and Table F-5 and the 16PSK

numerical data is tabulated in F-6. All of the data are plotted in

dB.
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Table F-1. The first set of BPSK variance data.

_qR

30

25;

24

23

22

21

20

19

18

17

16

15

14.5

14

13.5

13

12.5

12

11.5

11

10.5

High SNR
BL/SR=1%

(variance)
-63.01

-53.01

-48.01

-47.01

-46.01

-45.01

-44.01

-43.01

-42.01

-41.01

-40.01

-39.01

-38.01

-37.51

-37.01

-36.51

-36.01

-35.51

-35.01

-34.51

-34.01

-33.51

High SNR
BL/SR=O.5%

(variance)
-66.021

-56.021

-51.021

-50.021

-49.021

-48.021

-47.021

-46.021

-45.021

-44.021
-43.021

-42.021

-41.021

-40.521

-40.021

-39.521

-39.021

-38.521

-38.021
-37.521

High SNR
BL/SR=O.25%

(variance)
-69.031

-59.031

-54.031

-53.031

-52.031

-51.031

-50.031

-49.031

-48.031

-47.031
-46.031

-45.031

-44.031

-43.531

-43.031

-42.531

-42.031

-41.531

-41.031
-40.531

-37.021

-36.521

-40.031

-39.531

High SNR
BL/S R=O. 125%

(variance)
-72.041

-62.041

-57.041

-56.041

-55.041

-54.041

-53.041

-52.041

-51.041

-50.041

-49.041

-48.041

-47.041

-46.541

-46.041

-45.541

-45.041

-44.541
-44.041

-43.541

-43.041

-42.541
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Table F-2. The second set of BPSK variance data.

High SNR
SNFI BL/SR=1%

(dB) (variance)
1 0 -33.01

9.5

8

7

6

-32.51

-32.01

-31.008

-30.002

-28.986

5 -27.948

4 -26.878

3 -25.765

2 -24.602

-23.383

-22.108

H_h SNR
BL/SR=0.5%

(variance)
-36.021

-35.521

-35.02

-34.019

-33.013

-31.996!

-30.958

-29.888
-28.776

-27.612

-26.393

-25.118

High SNR
BL]SR=0.25%

(variance)
-39.031

-38.531

-38.03

-37.029;

-36.023

-35.006

-33.968

-32.899

-31.786
-30.623

-29.4041

-28.129

High SNR
BL/SR=0.125%

(variance)
-42.041
-41.541

-41.041

-40.039

-39.033

-38.017

-36.979

-35.909

-34.796

-33.633
-32.414

-31.13£
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Table F-3. The QPSK variance data.

St_q

(dB)
40

30

High SNR High SNR
BL/SR=1% BL/SR=0.5%

(variance) (variance) .
-63.01 -66.021
-53.01 -56.021

High SNR
BL/SR=0.25%

(variance) ,
-69.031

-59.031

High SNR
BL/S R=0.125%

(variance)
-72.041

-62.041
25 -48.01 -51.021 -54.031 -57.041

24 -47.01 -50.021 -53.031 -56.041

23 -46.01 -49.021 -52.031 -55.041
22 -45.01 -48.021 -51.031
21 -44.01

20 -43.01

19 -42.01

1 8 -41.01

1 7 -40.01

1 6 -39.01

-38.0115

-54.041

-47.021 -50.031 -53.041

-46.021 -49,031 -52.041

-45.021 -48.031 -51.041

-44.021 -47.031 -50.04"

-43.021 -46.031 -49.041
-42.021 -45.031 -48.04"

-41.021

-40.021

-39.019

14

13

12

-44.031

-43.031

-30.445

-42.03

-37.01

-36.009

-35.004

-47.041

-46.041

-45.04

-33.455

-38.014 -41.024 -44.035

11 -33.981 -36.991 -40.001 -43.012
10 -32.912 -35.923 -38.933 -41.943

9 -31.758 -34.769 -37.779_ -40.789

8 -30.478 -33.488 -36.498 -39.508
7 -29.039 -32.05 -35.06 -38.07
6 -27.434

-28.676

-26.752

-24.682

5 -25.666

4 -23.741

3 -21.671

2_ -19.458

-17.099

-14.588

1

0

-36.465

-31.686 -34.696
-29.762 -32.772

-27.692 -30.702

-22.468 -25.478 -28.489

-20.11 -23.12 -26.13

-17.598 -20.608 -23.618
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Table F-4. The first set of 8PSK variance data.

High SNR
SNR BL/SR=I Vo

(dB) (variance)
40 -63.01

High SNR. SNR
BL/SR=0.5 Vo BL/SR=0.25%

(variance) (variance)
-66.021 -69.031

30 -53.01 -56.021

25 -48.01 -51.021

24 -47.01 -50.021

23 -46.01

221 -45.01'

21 -44.01

20 -43.01

19 -42.01

1 8 -41.007

1 7 -39.992

1 6 -38.938

1 5' -37.791

14.5 -37.163

1 4 -36.486

13.5 -35.751
1 3 -34.951

-34.07912.5

-49.021

-48.021:

-47.021

-46.021

-45.021

-44.018

-43.003

-59.031

-54.031

-53.031

High SNR
BL/S R=0.125%

(variance)
-72.041

-62.041

-57.041

-52.031
-51.031 -54.041

-50.031 -53.041

-49.031

-48.031

-47.028

-46.013

-41.948 -44.958

-40.802 -43.812

-40.173 -43.184

-39.496 -42-507

-38.761 -41.772

-37.961 -40.972

-37.089 -40.1

12 -33.128 -36.138 -39.148

11.5 -32.091 -35.101 -38.112

11 -30.962 -33.973 -36.983
-32.746 -35.75610.5 -29.735

-52.041

-51.041

-50.038

-49.023

-47.969
-46.822

-46.194

-45.517
-44.782

-43.982

-43.11

-42.15U

-41.122

-39.993

-38.76E
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Table F-5. The second set of 8PSK variance data.

High SNR
SNR BL/SR=1%

(dB) (variance)
1 01 -28.403

9.5 -26.959

8.5

8

7.5

7

6.5
6

5.5

4

r_3i
2i

-25.393

-23.7

-21.873:
-19.9051

-17.7931

-15.537

-13.139

-10.606

-7.9448

-2.286

3.7369

10.026

High SNR
BL/SR=0.5%

(variance) .
-31.414

-29.969

-28.403

-26.71

-24.883

-22.915

-20.803

-18.548

-16.149

-13.616

-10.955

-5.2963

0.72662

7.0159

High SNR
BL/SR=0.25%

(variance) .
-34.424

-32.979

-31.413

-29.72

-27.894

-25.926

-23.814

-21.558

-19.16

-16.626

-13.965

-8.3066

-2.2837

4.0056

High SNR
BL/S R=0.125%

(variance)
-37.434

-35.989

-34.424

-32.731

-30.904

-28.936

-26.824

-24.568

-22.17
-19.637

-16.976

-11.317

-5.294

0.9953
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Table F-6. The 16PSK variance data.

High SNR
SNR BL/SR=1%

(dB) (variance)
40 -63.01

30 -53.01

25 -48.01
24 -47.01

23 -46.01
-45.0122

21

20

-44.01

18

-42.491

19.5! -41.749

1 9 -40.935

18.5 -40.04
-39.056

High SNR
BL/SR=O.5%

(variance)
-66.021
-56.021

-51.021

High SNR
BIESR=0.25%

(variance)
-69.031

-59.031

-54.031

-50.021 -53.031

-49.021 -52.031

-48.021 -51.031

-47.021

-45.501

-50.031

-48.511

High SNR
BL/S R=0.125%

Ivariance)
-72.041

-62.041

-57.041

-56.041

-55.041

-54.041

-53.041

-51.522

-44.759 -47.769 -50.78

-43.945 -46.956 -49.966

-43.051 -46.061 -49.071
-45.076-42.066

17.5 -37.971 -40.981

17 -36.775 -39.786

16.5 -35.457 -38.467

16 -34.001 -37.011

15.5 -32.39

1 5 -30.605

14.51 -28.62

14 -26.411

13.5 -23.952
1 3 -21.218

12.5 -18.19

-43.991

-42.796

-41.478

-40.022i

-38.411

-36.625
-34.641

-32.432

-35.401

-33.615

-31.63

-29.422

-26.962

-24.228

-48.087

-47.002

-45.806

-44.488

-43.032

-41.421

-39.635

-37.651

-35.442

-29.973 -32.983

-27.239 -30.249

12 -14.857

11.5 -11.219

11 -7.2854

10.5 -3.0789

-21.2 -24.211

-17.868 -20.878
-17.24-14.229

-10.296

-6.0892

-27.221

-13.306 -16.31E

-9.0995 -12.11
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Appendix G
MPSK HIGH-SNR MAP CARRIER TRACKING SIMULATION RESULTS

In Chapter 6 the simulation results were presented.

Simulations were conducted to verify that the numerical results

for the 8PSK and 16PSK variance of the phase error were correct.

These simulations were conducted using the nonlinear baseband

model of Figure 4-2. All of the baseband simulations assume

phaselock at the modulation point corresponding to the zero-

phase angle modulation symbol and assume that only the zero-

angle modulation symbol is being transmitted. This is exactly

what was done for the variance of the phase error component

calculations of Chapter 5. Further, it speeds up the simulation time

since random data is not required.

One sample per symbol period is used in these time-

simulations where the output at the end of a simulation run is the

statistical variance of 35 samples of the VCO phase in the

baseband loop. Since the "received" signal phase is held at a

constant zero radians, the VCO output phase is indeed the phase

error. Only 35 samples were used to save computational time.

Each simulation actually executes several thousand

iterations to obtain the 35 statistical samples. This is required

because adjacent samples in time are highly correlated with each

other. It is the nature of the phaselock loop to average out the

effects of noise and thus vary the phase slowly in response. To
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obtain statisically uncorrelated samples required analysis of the

transfer function of the loop.

The tracking loop is a filter whose transfer function,

translated down to baseband, is H(s). The response of this filter to

white Gaussian noise is a noise process whose normalized power

spectral density magnitude response is [H(s)[2. The inverse Fourier

transform of this response yields the normalized autocorrelation

function of the process. What is of interest in this autocorrelation

function are the points at which the function equates to zero.

These points correspond to the time difference required between

noise samples so that they have zero correlation with each other.

The response, In(s)[ 2, is a lowpass function and its inverse Fourier

transform yields a function that has a damped oscillation in both

directions as the time difference increases. The first zero crossing

represents the shortest amount of time required between

uncorrelated samples. Therefore for all 4 PSK schemes, at 3

different loop bandwidths, and for all the desired SNR's, the first

zero crossing was obtained. This minimized the required run time

of the simulations.

The source code for the simulation of the 8PSK baseband

carrier tracking loop is:

%8PSK high-SNR MAP carrier tracking simulator

clear
tl_-clock;
format long
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%Initialization parameters: natural freq, damping
%factor,symbol rate

wn=1171.88;

zeta= 1.2;
sr=5e5;

%Calculate filter integrator gain: a, integrator parmeter
%c=a*T, high-SNR gain: k,vco integrator parameter;

a=wn/(2*zeta);
c=a/sr;
k=2*wn*zeta;
k2 =k/sr;

%Initialize carrier phase, vco initial phase, and loop
%filter integrator

sigphs=O;
vcophs=O;
fltint=O;

%set random number distribution

rand('normal');

%Set statcnt size for snrs. This is the number of

%samples used to compute the variance of the phase
%error. It sets up the size of the outer loop. The size of
%the inner loop is found from the auto correlation
%function associated with white noise that has passed

%through a lowpass function that has the same
%transfer function as the loop, namely H(s).

stattot=35;

% For snr's from 5.5 to 15 dB in .5 dB steps and then
%16 to 25 in 1 db steps the zero crossings occur at the

%following simulation time sample increments

statsize=[6280
5495
4867
4239
3768
3454
3140
2826
2512
2355
2198

274



2041
1884
1727
1727
1570
1570
1570
1570
1413
1413
1413
1413
1413
1413
1413
1413
1413
1413
1413
1413];

%The snr's that the simulations will be run at

snrv=[5.5
6

6.5
7
7.5
8
8.5
9
9.5
10
10.5
11
11.5
12
12.5
13
13.5
14
14.5
15
16
17
18
19
20
21
22
23
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24

2S];

%outer loop to count through the snr array

for snrcnt = 1:1:30;

snrdb = snrv(snrcnt);
snr= lOA(snrdb/lO);

%noise STDEV out of correlators

sigma= sqrt( 1/(2*snr));

%set carrier phase, vco initial phase, loop filter
%integrator variables and phase error

sigphs=O;
vcophs=O;
fltint=0;

phserr=O;
fltlast=O;

%Reset stats for calculating variance

sumerr=O;

sqrerr=0;
maxerr=0;

%Initialize random number generator

rand('seed',650);

%Statistics loop. This loop iterates once for each sample
%used in the variance calculation

for statcnt = 1:1 :stattot;

%The loop that sets the number of samples used
%between the statistical samples

for simcnt = 1:1 :statsize(snrcnt);

%Fix data

im=l.0;

qm=0.0;

%Generate noise

hi=sigma*rand ( 1 );
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nq=sigma*rand(1);

%Calculate correlator outputs

i=im*cos(phserr)+qm*sin(phserr)+ni;

q=_im*sin(phserr)+qm*cos(phserr)+nq;

%Make data estimates

rcvdphs= atan2 (q,i);

if (rcvdphs<O.392699082)&(rcvdphs>=-0.392699082),
ihat=l.O;

qhat=O.O;
elseif (rcvdphs<l. 178097245)&(rcvdphs>=0.392699082),

ihat=O.707106781;

qhat=0.707106781;
elseif (rcvdphs< 1.963495409)&(rcvdphs>= 1.178097245),

ihat=O.O;

qhat--1.O;
elseif (rcvdphs<2.748893572)&(rcvdphs>= 1.963495409),

ihat=-0.707106781;

qhat=0.707106781;
elseif (rcvdphs<_2.748893572)l(rcvdphs>=2.748893572),

ihat---- 1.0;

qhat=O.O;
elseif (rcvdphs<- 1.963495409)&(rcvdphs>=-2"748893572),

ihat=-0.707106781;

qhat=-0.707106781;
elseif (rcvdphs<- 1.178097245 )&(rcvdphs>=- 1.963495409),

ihat=O.O;

qhat=-l.O;

else,

end

ihat=0.707106781;

qhat=-0.707106781;

%Generate error signal

error=i*qhat-q*ihat;

%Calculate filter output

filtout-- fltint+error;

%Calculate filter integrator's new value for next time

fltint=fltint+error*c;

%Calculate next value of the vco phase
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vcophs=vcophs+fltlast*k2;

%Setnext vco input value;

fltlast=filtout;

%Calculatenext value of the phaseerror

phserr=-vcophs;

%Storemax phaseencountered

if(abs(phserr)>maxerr),
maxerr=abs(phserr);
end

end

%Iterate statistical parameters

sqrerr=sqrerr+phserr^ 2;
sumerr=sumerr+phserr;

end

meanphs(snrcnt)=sumerr/stattot;
vp=sqrerr/(stattot-1)-sumerrA2/(stattot*(stattot-1));
varphs(snrcnt)=vp;
maxsave(snrcnt)=maxerr;
end

%checktime and savedata

t2 =clock;
tdiff=t 2-t1;

save8pk1650b wn zetasr meanphsvarphs maxsave

The simulation data is tabulated in the following tables for BPSK,

O PSK, 8PSK, and 16PSK. The simulations were conducted using

three specific high-SNR loop bandwidths (the same three used in

the hardware) and a symbol rate of 500 kilo-samples-per-second.

The ratios of the three specific bandwidths to the above symbol
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rate are listed on the simulation data graphs of Figures 6-6

through 6-17 and at the tops of the following data tables.

The BPSK simulation data are tabulated in Table G-1. The

QPSK data is contained in Table G-2 and Table G-3 contains the

8PSK variance data. The 16PSK data are tabulated in Table G-4.

All the data are plotted in dB.

Table G-1. The BPSK simulation variance data.

(dB)
25

High SNR
BL/SR=0.19%

(variance)

20 -50.31

1 5 -45.31

10 -40.31

5 -35.74!
4 -34.67

3 -33.14

2

1

0

High SNR
BL/SR=0.33%

(variance)

Hk:jhSNR
BL/SR=0.66%

(variance)
-49.67

-50.31 -44.67

-45.31 -39.67

-40.31

-35.74
-34.67

-34.67

-29.98

-28.99

-33.14 -27.26

-32.06 -32.06 -26.25

-30.89 -30.89 -25.39
-29.15-29.15 -24.82
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Table G-2. The QPSK simulation variance data.

High SNR
SNR BL/SR=0.19%

(dB) (variance) .
25

High SNR
BL/SR=0.33%

(variance) .

High SNR
BL/SR=O.66%

(variance)
-49.67

20 -50.11 -47.98 -44.67

1 5 -45.31 -42.99 -39.67

1 0 -40.44 -37.74 -34.74

9 -39.70 -37.12 -33.77

8 -36.88 -35.75 -32.73

7 -35.06 -33.64 -30.76

6 -35.34 -32.74 -30.27

5 -34.45 -30.91 -29.00

4 -31.85 -27.77 -27.31

3 -29.16 -26.13 -22.89

-26.422 -28.88 -22.21

1 -24.01 -22.88 -19.11

0 -20.75 -21.14 -16.87
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Table G-3. The 8PSK simulation variance data.

High SNR
BL/SR=0.19%

(dB) (variance)
25

24

23

22

21

20 -50.31

19 -49.31
1 8 -48.31

17

16

15

14.5

14

13.5

13

12.5
12

11.5

11

10.5

10

9.5

9

8.5

8

7.5

7

6.5

-47.52

-46.32

-45.5

-44.83

-43.58

-43.35

-43.58

-42.54

-41.89
-38.9

-38.48

-37.76
-35.57

-36.39

-34.24

-31.6

-30.63

-29.66

-26.911

High SNR High SNR
BL/SR=0.33% BL/S R=0.66°/o

ivariance ) (variance)
-52.99 -49.521

-51.99 -48.52

-50.99 -47.521

-49.99; -46.521

-48.99
-47.99

-46.99

-45.99

-45.04

-44.16

-43.09 =

-42.63

-41.93

-41.02

-39.95

-39.6

-38.21

-37.94

-36.13

-35.78

-35.23
-34.27

-31.12

-30.91

-30.19

-28

-23.11

-21.28

-45.521
-44.52

-43.52

-42.52

-41.426

-40.396

-38.695

-38.203

-37.962

-37.664

-36.233

-36.674

-35.111

-34.602

-32.81 I

-31.246

-30.56t:

-28.79, _
-27.95;

-27.43£

-25.411

-22.21{
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Table G-4. The 16PSK simulation variance data.

High SNR
BL/S R=0.19%

(variance) .

High SNR
BL/SR=0.33%

(variance)

24

23

22 -50.3

21 -48.87
20 -49.93 -46.81

19.5 -49.2 -46.63

High SNR
BL/SR=0.66%

-46.76

(variance)
-49.67

-48.67

-47.7
-46.61

-45.52

-44.48
-44.23

-441 9 -48.43 -46.69

18.5 -47.34 -45.14 -40.66

-44.7 -39.9218

17.5 -45.5 -43.57

17 -44.33 -43.37

16.5 -44.13 -42.02
-41.316 -41.72

15.5 -41.83 -39.36

15 -39.14

14.5 -37.11 -35.41

14 -35.85 -33.51

-37.39

-30.0313.5 -31.57

-39.76

-38.18

-38.15

-37.4

-36.81

-33.75

-33

-30.71

-29.17
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Appendix H

THE HARDWARE TEST CONFIGURATION AND RESULTS

As discussed in Chapter 6 an MPSK high-SNR carrier

tracking loop was constructed in hardware to verify the variance

results. A simulated MPSK transmission was created and used as

an input to the loop. In fact, just as was done with the numerical

anaylsis and the computer simulations, the MPSK transmission

represented the transmission of the same symbol continuously.

This made the MPSK signal a continuous wave (CW) carrier signal

that could be obtained from a standard frequency synthesizer and

it removed the impact of intersymbol interference as a dependent

variable in the testing. White noise was added to the CW carrier

signal and the result passed to the demodulator front-end of the

carrier tracking loop. This demodulator front end is a quadrature

structure that power-divides the CW carrier-with-noise signal into

two signals that are mixed in quadrature with the "VCO" signal.

Actually a numerically controlled oscillator (NCO) was used in

place of a VCO since much of the loop was constructed with digital

hardware. The outputs of the quadrature mixers are fed through a

set of lowpass filters. The use of lowpass filters instead of

integrate-and-dump circuits does not cause a problem since the

test set-up is calibrated at the output of the filters. Analog-to-

digital conversion takes place after the lowpass filters and the

generated 8 bits of I channel baseband data and 8 bits of O_
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channel baseband data are passed to a set of electronically

programmable read only memory (EPROM) chips. These EPROM

chips generate the error signal of the high-SNR loop using16 bits.

This error signal is processed by a digital filter that creates a

second order transfer function for the loop. The output from

digital filter, a 16-bit word, is added to a 32-bit word that

represents the quiescent frequency of the output sinusoid from

the loop NCO. This 32-bit sum is the frequency that the NCO will

output during the next symbol period and it is transferred byte-

serially to a Stanford Telecomm 1172/1272 NCO/evaluation board

that generates both the sine and cosine of the desired output

frequency. These two sinusoids are analog when they leave the

evaluation board and return to the demodulation front-end where

they are mixed in quadrature with the "received" signal. This

circuit is shown in Figure H-1.

The I and Qbaseband data at the output of the lowpass

filters are corrupted by the input noise and thus variance

measurements cannot be made using these data. To facilitate

making variance measurements the outputs from the NCO are

mixed in quadrature with the "clean" CW carrier from the

synthesizer. The mixer outputs are lowpass filtered to remove the

double frequency term and create I and Qbaseband data that are

corrupted only with phase jitter from the NCO.

This I and O_data are displayed on a modulation analyzer

that can plot the I and O data in the constellation space. If there is
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no noise and if the carrier tracking loop is phaselocked the display

will show a single lock point. If there is noise present and

therefore jitter on the NCO signals then the lock point will take the

shape of an arc. The arc is a plot of past samples of the phase

error. It is brightest in the center, at the lock point, indicating that

the mean of the phase error is zero. The modulation analyzer

samples the I and Ocomponents 4096 times over a period of

approximately 30 seconds and calculates the statistical variance of

the samples. By taking such a large sample set it was hoped that

any correlation between adjacent samples would be averaged out.

The results seem to indicate this is indeed the case. All the

tabulated data that follows is plotted in dB.

Table H-1 and Table H-2 contain the hardware results for

BPSK that were plotted in Figure 6-18. The BPSK data plotted in

Figure 6-19, for the second loop bandwidth is tabulated in Table

H-3 and H-4. The third bandwidth that was tested for BPSK

yielded the data plotted in Figure 6-20 and tabulated in Tables H-

5 and H-6.

For OPSK, H-7 and H-8 contain the hardware results for the

smallest high-SNR loop bandwidth-to-symbol rate ratio. This is

the data shown in Figure 6-21. The data in Figure 6-22 is

tabulated in Tables H-9 and H-IO, and the data in Figure 6-23 can

be found in Tables H-11 and H-12, corresponding to the widest

high-SNR loop-to-symbol rate ratio tested.
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Table H-13 and Table H-14 contain the hardware results for

8PSK that were plotted in Figure 6-24. Table H-15 is the tabulated

data for the results in Figure 6-25 and the data corresponding to

the largest high-SNR loop bandwidth-to-symbol rate ratio, plotted

in Figure 6-26, is tabulated in Tables H-16 and H-17.

For 16PSK the data shown in Figure 6-27 is tabulated in

Table H-18 and the data of Figure 6-28 is contained in Table H-19.

The final two tables, Table H-20 and H-21, contain the the data for

the largest high-SNR loop bandwidth-to-symbol rate ratio. This is

the data shown in Figure 6-29.
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Table H-1. The first set of BPSK hardware variance data at 0.19%

high-SNR loop bandwidth-to-symbol rate ratio.

LAB

SNR

(dB)

32.9

27.9

25.4

22.9

22.4

21.9

21.4

20.9

20.4

19.9

19.4

18.9

18.4

17.9

17.4

16.9=

16.4

15.9

15.4

14.9

14.4

13.9

13.4

12.9

12.4

11.9

11.4

10.9

10.4

9.9

9.4

SNR for Theoretical

Measured Theoretical

Variance Data (dB)

-43.775 3 5
-44.223

- 43.736 !i ;_ _i_!; 2

,, o =.
-'HI" ,,9. ;.J _._

- 3.673 _i4 __ _;_

-43 644 _!_,_!_ii

- 43.623 _S_%_ _

-43.004 _i:_:_

-43 405 _ .... _:_

-42.997 _

-43.401 21

-42.93 20.5

variance with

added noise floor

Theoretical

variance

30 -43.898 -60.232

27.5

25 -43.685 -55.232

24.5

24 -43.607 -54.232

23.5

23_ -43.51 -53.232

22.5

22 -43.392 -52.232

21.5

-43.248

-42.679 20

-42.519 19.5

-43.072

-42.861"42.461E_i_ 1 9

-51.232

-42.471
-42.169

-41.869

-50.232

-49.232

18.5

1 8 -42.609 -48.232

17.5

-41.604 : 1 7 -42.312 -47.232

-41.538 16.5

-412o1!ii ;i!i!ili3!iiiii16
-40.599
-40.321

- 39.876

_98
-39.644

15.5

-41.964 -46.232

1 5 -41.562 -45.232

14.5 -41.34 -44.732

1 4 -41.104 -44.232

13.5 -40.853 -43.732

-40.589

-40.309

-40.016

13

12.5

12

-38.874
-38.481

11.5-38.033 -39.709

-43.232

-42.732

-42.232

-41.732
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Table H-2. The second set of BPSK hardware variance data at

0.19% high-SNR loop bandwidth-to-symbol rate ratio.

LAB

SNR Measured

(dB) Variance

84 -37276_+74 -3647+ _i
6.9 -36.047 3+ !_

6.4: -35.92 _

i +5.9 -35.148 _+
5.4 -34.776

4.9 -33.937_

4.4 -33.854 _

3.9 -33.308 ii _
3.4 -32568_ :_i
2.9 -31.852 _
2.4 -31.857 _i _

1.9 -31.5 _ _ _
14 -30865_ _
0.9

0.4
-0.1 _+/_i_:

- 0.6
- 1.1 _:.:_.i_i_;_
-1.6

-2.1

SNR for

Theoretical

Data {dB)
11

10.5 _

10

9.5
9

8.5
8

7.5!

7

6.5

6

5.5

5

4.5

4
3.5

3

2.5
2

1.5

1

0.5_

0

Theoretical

variance with

added noise flool
-39.389

Theoretical

variance
-41.232"

-39.055 -40.732

-38.709 -40.232

-38.351 -39.732

-37.981

-37.601

-37.209

-36.811

-36.395

-35.985
-35.538

-35.128
-34.632

-33.671

-32.645

-31.549

-30.381

-29.141

-39.231

-38.732

-38.23

-37.732
-37.223

-36.732

-36.206

-35.732

-35.166

-34.093

-32.97_

-31.804

-30.5/z

-29.28"
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Table H-3. The first set of BPSK hardware variance data at 0.33%

high-SNR loop bandwidth-to-symbol rate ratio.

LAB

SNR

(dB)

30.4

27.9
25.4

22.9

20.4

19.4

18.9

18.4

17.9

17.4

16.9
16.4

15.9

15.4
14.9

14.4

13.9

13.4

12.9

12.4

11.9

11.4
10.9

10.4

9.9

9.4

8.9

8.4

7.9

7.4

6.9

Measured

Variance

-43.693 ii_!iiiii_:i_:_i!iiii_i_]iiiiiiiiil
-43.976

SNR for Theoretical

Theoretical variance with

Data (dB)
32.5

added noise floo_

30 -43.776_

27.5

-43.878 _,_:_i_! 2 5
-42.771 22.5

-42.46 _:_i_,_i 21.5

-41.89_iii_iiiiiii_iiiii_iiiiiiiiiiiii! 21

20.5

20
-41.844

-41.262

-43.421

-42.726

-42.458

19.5 -42.143

Theoretical

variance

-57.824

-52.824

-48.824

-47.824

-46.824

-40.806!iiiiii!iii!_!!i!i!ii!!i!_!!_i!iiii!!!_i!i!_iiiiI 1 9
-40.844!iiiii_iii_iii!iii!iiiii_ii!iil;ii!ii;il18.5 -41.776 -45.824

18

17.5 -41.355 -44.824_iiiiiiiiiiii!iiUiiii_!ii
-39.92 !!!!iii!iii!:!!i!!i:i;i_i_!:i_

-39.651 _i_ii_iii_i_iii_i_i_iiii_; 17

-39.419 16.5 -40.876 -43.824

16
15.5 -40.34 -42.824

1 5 -40.051 -42.324

14.5 -39.748 -41.824
1 4 -39.431 -41.324

13.5 -39.101 -40.824

1 3 -38.759 -40.324

12.5 -38.404 -39.824

-38.038

-39.066 .;

-38.712
-38.463i::; ;;;{

-36.069i _:
-35.815
-35.528 ii;ii¢ii_iiiiii¢!_!i:!iii!iiiiiiiiiil;!

-34.561 !!ii;iiiiiiii_!i!iiiil]ili;!iii!i;ii!iiii_iiii!i
-34.1561i!i!i_!i!iiii,lili:_iiiiiiii!iiiil;iiii!i;iiiiiii

_i:i;i;;iiiiiil/iiii:_iil;!iUi

-33.601 ?iiiiiiii:iii!iiii!!iiii:i!iiiiiiiiii:I
-33.033 ii:ii;!ili!i:iii;iiiiil;;i_iiii'iii_iii:iiil;i;:i

12

11.5

11

-37.661

-37.273

-39.324

-38.824

-38.324

10.5 -36.876 -37.824

1 0 -36.47 -37.324

-36.0549.5

9 -35.632
-36.824
-36.324
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Table H-4. The second set of BPSK hardware variance data at

0.33% high-SNR loop bandwidth-to-symbol rate ratio.

i LAB
i_--t Measured

(dB) Variance
6.4 -32.483 _:_=_ _:_:

5.9 -32 081 i'_i_Ni2,_
5.4 -31793 !! 
4.9 -31 512 _ .............

4.4! -30.824 _ i_;
3.9 -30. 217 _ __:_::,_

-29 23i _ I N_ i"2.9 " -N _..:_;;

2.4 -29.029
1.9 -27.975_ i

14 -27.667
0.9 - 526.96
0.4 -2 6.3 45 _i_i_ii_i

-25 66 i_
-0.1 " _N_giii}_i_

77 _-0.6 25.0 _,;_?_,;_
-1.1 -24.51

-1.61 -23.864

SNR for

Theoretical

Data {dB)
8.5

8

7.5

7

6.5

Theoretical
variance with Theoretical

added noise floo_ variance

-35.201 -35.822

-34.766 -35.324

-34.316 -34.817

-33.875 -34.324

-33.4 -33.801

6 -32.964

5.5 -32.446

4.5 -31.447

4
3.5 -30.394

3

2.5 -29.283

2
1.5 -28.11

1
0.5 -26.8771

-33.324

-32.764

-31.698

-30.59

-29.434

-28.225

-26.963
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Table H-5. The first set of BPSK hardware variance data at 0.66%

high-SNR loop bandwidth-to-symbol rate ratio.

Theoretical

SNR variance with

(dB) added noise floor
30 -43.469

29

28

27

26

25 -42.83

24.5i
24 -42.61

23.5

2 3 -42.349

22.5

22 -42.04

21.5
21 -41.681

20.5

20 -41.267

19.5

1 9 -40.797

18.5

1 8 -40.269

17.5

1 7 -39.684
16.5

1 6 -39.045

15.5

1 5 -38.354

14.5 -37.991

14 -37.617

13.5 -37.232

1 3 -36.838

12.5 -36.434

Theoretical

variance

-54.814

-49.814

-48.814

-47.814

-46.814

Measured

variance

-43.464

-43.529

-43.372

-43.193

-43.036

-42.849

-42.711

-42.573

-42.658

-42.619

-42.148

-41.995

-41.988
-45.814 -41.672

-41.395

-44.814 -40.893

-40.909

-43.814 -40.456

-40.325

-42.814

-41.814

-40.005

-39.652
-39.384

-38.788

-40.814 -38.664

-38.093

-39.814 -37.781

-39.314 -37.435

-38.814 -37.036

-38.314 -36.779

-37.814 -36.477

-37.314 -35.788
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Table H-6. The second set of BPSK hardware variance data at

0.66% high-SNR loop bandwidth-to-symbol rate ratio.

Theoretical

SNR variance with

(dB)
12

11.5

11

10.5

10

9.5

9

8.5

8

7.5
7

6.5

6

5.5
5

4.5

4

3.5!

3

2.5

2

1.5

1

0.5

0

added noise floor
-36.021

-35.601

-35.173

-34.738

-34.297
-33.851

_33.398

-32.942'
-32.479

-32.016

-31.54

-31.075

-30.578

-30.123

-29.586

-28.556

-27.477

-26.345

-25.155

-23.908

Theoretical Measured

variance

-36.814

-36.314 !

-35.814

-35.314

-34.814

-34.314

-33.813

-33.314

-32.812
-32.314 i

-31.806
-31.314

-30.79

-30.314
-29.754

-28.687

-27.58

-26.424

variance
-35.537

-35.061

-34.53

-34.015
-33.715

-33.163

-32.832

-32.384
-31.836

-31.341

-30.721

-30.628

-29.845

-29.298

-28.683

-28.53

-27.837

-27.167

-26.74J
-26.07E

-25.7(

-25.24;_

-25.215 -24.47- _
-23.781

-23.953 -23.27',
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Table H-7. The first set of QPSK hardware variance data at 0.19%

high-SNR loop bandwidth-to-symbol rate ratio.

(dB)
3O

29

28

27

26
25

24

23

22.5

22

21.5
21

20.5

20
19.5

19

18.5

18

17.5

17

16.5
16

15.5

15

14.5

14

13.5

13

12.5

12

11.5

Theoretical

variance with Theoretical Measured
added noisefloor variance variance

-41.047 -60.232 -41.002

-41.101

-41.184

-41.045

-40.962

-40.935 -55.232 -40.657

-40.894 -54.232 -40.472

-40.842 -53.232 -40.504

-40.83

-40.778: -52.232 -40.667

-40.477

-40.698 -51.232 -40.593

-40.492

-40.6 -50.232 -40.478

-40.342
-40.479 -49.232 -40.178

-40.281

-40.332 -48.232 -40.153

-39.854

-40.153 -47.232 -39.925

-39.922

-39.938 -46.232 -39.628

-39.682
-39.322

-45.232 -39.302

-39.165

-44.232-39.379 -39.1041
-38.7261

-39.026 -43.23 -38.656

-38.394

-38.616 -42.225 -38.063

-37.943!
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Table H-8. The second set of QPSK hardware variance data at

0.19% high-SNR loop bandwidth-to-symbol rate ratio.

(dB)

11

10.5

10

9.5
9

8.5

8

7.5

7

6.5

6

5.5

5

4.5

4

3.5
3

2.5

2

1.5

1

0

Theoretical
variance with Theoretical

added noise floor variance

Measured

-36.046

variance

-37.666-38.14 -41.201
-37.381

-37.661 -40.129 -36.864
-36.707

-36.894 -38.968 -36.303
-35.746

-37.673 -35.393

-32.166 -32.76

-35.095

-32.996

-32.469

-31.553

-31.134

-30.392 -30.778 -30.111
-29.217

-28.398 -28.638 -27.976

-26.2 -26.343

-23.813 -23.895

-21.243 -21.288

-26.731

-25.37

-24.211

-23.505
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Table H-9. The first set of O_PSK hardware variance data at 0.33%

high-SNR loop bandwidth-to-symbol rate ratio.

LAB

SNR

(dB)
42.9

32.9

27.9

22.9

21.9

20.9

19.9

18.9!

17.9

17.4

16.9

16.4

15.9

15.4

14.9

14.4

13.9

13.41

12.9

12.4

11.9

11.4
10.9

10.4

9.9
9.4

8.9

8.4
7.9

7.4

6.9

Measured

Variance

-41.589

-41.234
-41.291 _i_:_!_;_;!_i:

-40.665 _2_a;_:__::

-40.491 _==;_i!
-40 136 _,_i _'_

-39.788_

-3 9.61 9

SNR for Theoretical

Theoretical variance with Theoretical

Data (dB)
30

added noise floor

-41.107

variance

-57.824

25 -40.911 -52.824
24 -40.839 -51.824

23 -40.751 -50.824

22 -40.641 -49.824

21 -40.508 -48.824

20; -40.345 -47.824

19i -40.149 -46.824
18! -39.913 -45.824

17 -39.634 -44.824

1 6 -39.307 -43.824

-39.256 1 5 -38.926 -42.824
1 4 -38.491 -41.824-39.346

-38.8o3
-38.703 _

-38.449
-38.341 ..........................

-37.369

-37.549 !!!_ ::
-37

-36.501

13

12

11
10

9

8

-37.997

-37.444

-36.823

-36.169

-35.295

-3 6.2 91 ii!iiiiii_i!i!i iiiiliiiiiiil

-35.9o51iiiiiii!!i:ii i  i!ii! iii 
-35.418 iil i i_i:_!i'iii!iiiii!iiiiiiiil
-35.243!,iiii!ili;iii;il)i;iiii!ili;iii;i:.iiii_

-34217iii!iiiiii i iiiil
-33.549

-34.319

-40.823

-39.818

-38.796

-37.73

-36.583

-35.315

-33.167
iiii!iiiii!!iii_i_i!i_!i_iiii_ii__i!i_!_-32.637

7.5

7 -33.157 -33.898

6.5

6 -31.795 -32.324

5.5

5 -30.236 -30.599

4.5

4 -28.491 -28.731

3.5

3 -26.579 -26.731

2.5

2 -24.509 -24.603
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Table H-10. The second set of O.PSK hardware variance data at

0.33% high-SNR loop bandwidth-to-symbol rate ratio.

LAB SNR for Theoretical

SNR Measured Theoretical variance with

(dB) Variance Data (dB) added noise floe1
6.4 -32.119 _ii_!_ili:i_!_i_ 1.5

5.9 -31.399_ _'! 1

5.4 -30.825 _ _ 0.5

o4.4 -29.435_
3.9 -28.202_
3.4' -27.348_ _:_

2.4 -24.741_
1.9 -23.983_ _I_
1.4 -22.603 :_,

Theoretical

variance

-22.342-22.286

-19.905 -19.938
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Table H-11. The first set of QPSK hardware variance data at 0.66%

high-SNR loop bandwidth-to-symbol rate ratio.

St_q

(dB)
30

29.5
29

28.5

28

27.5

27

26.5

26

25.5

25

24.5

24

23.5

23

22.5
22

21.5

21

20.5
20

19.5

19_

118

8.5

17.5
17

16.5

16

15.5

15

Theoretical

variance with Theoretical Measured

added noise floor variance variance

-40.823i -54.814 -40.821

-40.909

-40.754

-40.593

-40.576

-40.735

-40.703

-40.51

-40.528

-40.48

-40.464 -49.814 -40.118

-40.548

-40.335 -48.814 -40.365

-40.038

-40.178 -47.814 -40.215

-39.852

-39.989 -46.814 -39.989

-39.826

-39.761 -45.814 -39.597

-39.52

-39.491 -44.814 -39.002

-39.021
-39.173 -43.814 -38.84

-38.631

-38.803 -42.814 -38.466

-38.287
-38.378 -41.814 -37.868

-37.699

-37.896 -40.814 -37.459

-37.39

-37.356 -39.814 -36.56
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Table H-12. The second set of O PSK hardware variance data at

0.66% high-SNR loop bandwidth-to-symbol rate ratio.

(dB)
14.5

14

13.5

13

12.5

12

11.5

11

10.5

10
9.5

9

8.5
8

7.5

7

6.5

6

5.5

5

4.5

4

3.5
3

2.5

2

1.5

1

0

Theoretical

variance with Theoretical

added noise floor

-36.76

-36.11

variance

Measured

variance

-36.672

-38.814 -36.104
-35.698

-37.813 -35.61

-35.406 -36.808

-34.643 -35.786

-33.834 -34.72

-32.851

-31.755

-30.484

-33.573

-32.305

-30.8881

-29.314

-27.588

-25.72

-29.029

-27.395

-25.593

-23.641 -23.721_

-21.543 -21.593

-19.332-19.302

-16.91 -16.927

-35.101

-34.917

-34.376

-33.969

-33.533
-33.24

-32.782

-32.225

-31.69

-31.064
-30.551

-29.88

-29.554

-28.639

-27.87

-27.069

-26.656

-25.52

-24.494
-23.368

-22.224

-21.034

- 19.80,_
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Table H-13. The first set of 8PSK hardware variance data at 0.19%

high-SNR loop bandwidth-to-symbol rate ratio.

LAB

SNR Measured

(dB) Variance

429 -42.266i_i_,
32.9 -42.532 },{

27.9 -42.383
26.9 -42 293
25.9 -42.085_¢}:_,
24.9 -41.556
2a 9 -41.973_iiiiiiii:i:_i!iii
22.9 41.486

22.4 -41.068_! i
21.91 -41.668

_ 21.4! -41.632
20.9_ -41.943
20.4 -41.42

19.9 -41.154

19.4 -41.414
18.9 -41.278

I17.9 -40.961 .........
17.4 -40.827

16.416.9 -40.587"40"932!iii
:: :.

15.9 -41.133

SNR for

Theoretical

Data (dB)

Theoretical

variance with Theoretical
added noise floo= variance

30 -42.329

25 -42.179i

24 -42.124

2 3 -42.055

22 -41.97

21 -41.866

20 -41.738

1 9 -41.581

1 8 -41.392

1 7 -41.161

-60.232

-55.232
-54.232

-53.232

-52.232

16 -40.874

15 -40.499

14.5 -40.263

-51.232

-50.232

-49.232
-48.228

-47.213

-46.156

-45.002

-44.368

14 -39.984 -43.682

13.5 -39.649 -42.935

13 -39.248 -42.12

-41.22912.5 -38.765

12 -38.185 -40.253

11.5 -37.493 -39.188

11 -36.673 -38.024

-36.75710.5 -35.709

10 -34.591 -35.377

30O



Table H-14. The second set of 8PSK hardware variance data at

0.19% high-SNR loop bandwidth-to-symbol rate ratio.

LAB

SNR Measured

(dB) Variance

15.4 -40.573 i:_
14.9 -40.313i
14.4 -40.038_

-39.918_
13.9 -39.414_13.4

12.9 -38.963_
-38.66_

12.4 -37.924_11.9
11.4 -37293_
lO0
10.4 -35.193 :=!_!_ _

9.9 -34.191 :_iiii

9.4 ...... -!ii_i_i _
8.9 -31.169_!i__
8.4 -29.823 _ _ _;ii_

SNR for Theoretical

Theoretical variance with Theoretical

Data (dB) added noise floor
9.5 -33.307

9 -31.851

8.5 ! -30.222

8

7.5

7

6.5

5.5

variance
-33.878

-32.252

-30.493

-28.419 -28.596

-26.444 -26.555

-24.303 -24.37

-22.004

-19.557

-22.044

-19.579

-16.973! -16.986
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Table H-15.8PSK hardware variance data at 0.33% high-SNR loop

bandwidth-to-symbol rate ratio.

LAB SNR for

SNR Measured Theoretical

(dB) Variance Data (dB)
42.9 -44.041 4 0

37.9 -43.395 i)i_i:_i_ 30

32.9i - 3.706_::_: _i_ 25

27.9 -43.754 _;:;;;__ 2 4
22.9 -43 713_(_ !_

20.9 -42.506_,_ N
19.9 -42 7 _,,__:.35_ii _.

__;_:_. • _:_18.9 -41.532_
17.9 -41.343 _ _ 1 8

17.4 -41.116 1 7
16.9 -40.953 1 61

i16.4 40.559 1 5
15.9 -40.144_;':i_i_i_i 14. 5

39 933
15.4 - . 14
14.9 -39.591 13.5

14.4 -39.38 13
13.9 -38.847 _!;_:i 12.5
13.4 -38.432 1 2

12.9 -37.892

12.4 -37.122

11.9 -36.557

10.9 9.5

10.4 9

9.9, -33.107 8.5
9.4l 8

8.9 7.5i

8.4 7
7.9 -27.931 6.5

6

Theoretical

variance with Theoretical

added noisefloor variance

-43.982 -67.824

-43.824 -57.824

-43.465 -52.824

-43.337 -51.824

23 -43.337 -51.824

22 -42.991 -49.824

21 -42.764 -48.824

20 -42.494 -47.824

19 -42.176 -46.824
-41.806

-41.374 -44.807
-40.865

-40.242

-39.871

-45.821!

-43.755

-42.615

-41.992

-39.448 -41.323

-38.965 -40.599

-38.41

-37.776

-37.051

11.5 -36.228

11 -35.298

10.5 -34.254
10 -33.089:

-31.7981

-30.373

-28.811

-27.108

-25.257

-39.813

-38.959

-38.03

-37.022

-35.927

-34.74

-33.456

-32.067

-30.566

-28.945

-27.198

-25.315

-23.255 -23.292

-21.103 -21.125

-18.8 -18.8141
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Table H-16. The first set of 8PSK hardware variance data at 0.66%

high-SNR loop bandwidth-to-symbol rate ratio.

SNFt

(dB) added noise floor
30 -40.535

29

28

27

26

25 -40.198

24.5

24 -40.076

23.5
23 -39.929

22.5
22 -39.749

21.5

21 -39.534

20.5
20 -39.277

19.5

1 91 -38.973
18.5

1 8 -38.618

17.5
1 7 -38.203

16.5
1 6 -37.712_

15.5

Theoretical

variance with Theoretical Measured

variance variance

-54.814 -40.56
-40.664

-40.466

-49.814

-48.814

-47.814

-46.814

-40.27

-40.36

-40.153
-40.106

-40.041

-39.795
-39.597

-39.685

-39.48

-39.375

-45.814 -39.617
-38.955

-44.814 -39.309
-38.694

-43.814 -38.632

-42.811

-38.436

-38.104
-38.231_

-41.797 -37.63/
-37.351

-40.744 -37.30_
-37.067
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Table H-17. The second set of 8PSK hardware variance data at

0.66% high-SNR loop bandwidth-to-symbol rate ratio.

St4:t

(dB)
15

14.5

14

13.5

13

12.5
12

11.5

11

10.5

10

9.5

9

8.5

8
7.5

7

6.5

6

Theoretical

variance with

added noisefloor
-37.107

-36.746_

-36.334

-35.861

-35.318

-34.695

-33.981

-33.168

Theoretical Measured

variance variance

-39.604 -36.568

-38.982 -36.278

-38.313 -35.785
-37.589 -35.392

-36.803 -34.756

-35.949 -34.096
-35.02 -33.474

-34.011 -32.584

-32.247 -32.917 -31.882

-31.212 -31.73 -30.813

-30.054 -30.4461 -29.454
-28.769 -29.057i -28.191

-27.35 -27.555

-25.792 -25.935

-24.091 -24.187

-22.242 -22.305

-20.242 -20.281

-18.091 -18.115

-15.789 -15.803

304



Table H-18. 16PSK hardware variance data at 0.19% high-SNR loop

bandwidth-to-symbol rate ratio.

LAB SNR for Theoretical
SNR Measured Theoretical variance with Theoretical

Data (dB) added noise floor variance

..........i

21

20
19.5

18.5
18

17.5

i 1716.5

-30.431

30 -43.213 -60.232

25 -43.03 -55.232
24 -42.963 -54.232

23 -42.88 -53.232
-42.777 -52.232

-42.652 -51.232

i_iiii'
iiiiiiii_ii!i_

!_!i!ii!

-42.402 -49.687

-42.25 -48.933

-42.059 -48.103

-41.812

-41.494

-41.082

-40.545

16

15.5

15

14.5
14

-39.851

-38.959

-37.829

-36,422

-34.709

-47.188
-46.178

-45.061

-43.82/

-42.462

-40.952

-39.278

-35.356

13.5
13

-32.669 -33.062

-30.293 -30.51L

-27.578 -27.69E

12.5 -24.531 -24.58£

12

11.5

11

10.5

-17.48 -17.49

-13.508 -13.51_

.9.2716 i -9.273;
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Table H-19. 16PSK hardware variance data at 0.33% high-SNR loop

bandwidth-to-symbol rate ratio.

LAB

SNR Measured

(dB) Variance
42.9 -43.466

37.9

32.9

27.9

22.9 -43.473 _ :,_>:_:_
22.4 -43.406

21.9
21.4 -42.939

_;e__i__.,_
20.9 -43.135 _ _¢_:__;

19.9 -42.211 ; _>{

19.4] -42.081

,89 -4,888
17.9 -41.029

17.4 -40.326

16.9 -39.703
16.4 -39.023
15.9

15.4 -37.185
14.9

14.4

13.9
iii iii

13.4 -31.945

SNR for Theoretical

Theoretical variance with Theoretical

Data (dB) added noise flool
40 -44.231

variance

-67.82,_

30 -44.063i -57.824

25 -43.685 -52.824
24

23

22

-43.55

-43.386

-43.188

-42.95

-42.512

21

20

-51.824

-50.824

-49.824

-48.824

-47.328

19.5 -42.256 -46.597

19 -41.945 -45.798

18.5 -41.563 -44.923
18 -41.093 -43.962

17.5 -40.517 -42.908

17 -39.812 -41.75

-38.956

-37.925

-36.695

16.5
16_

15.5

-40.478

-39.078

-37.533

15 -35.242 -35.825

14.5 -33.544 -33.93

14 -31.579 -31.82

13.5 -29.325 -29.467
13 -26.764 -26.842

12.5 -23.88 -23.92
12 -20.665 -20.684

11.5 -17.12 -17.128

1 1 -13.257 -13.261

10.5 -9.1027 -9.104
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Table H-20. The first set of 16PSK hardware variance data at

0.66% high-SNR loop bandwidth-to-symbol rate ratio.

29

28.5
28

27.5
27

26.5
26

25.5

25.
24.5

24

23.5
23

22.5
22

21.5
21

20.5

Theoretical
variance with Theoretical Measured

added noise floor variance variance
-41.398 -54.814 -41.427

-40.99 -49.814

-40.845 -48.814,

-40.669 -47.814

-40.457 -46.814

-40.204 -45.814

-41.275

-41.25_
-41.377

-41.156

-41.239

-41.346

-41.099

-41.222

-41.033
-40.91t

-40.727

-40.52z

-40.625

-40.247
-40.341

-40.12b

-39.91

-39.788

-39.613
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Table H-21. The second set of 16PSK hardware variance data at

0.66% high-SNR loop bandwidth-to-symbol rate ratio.

(dB)
20

19.5

19

18.5

18

17.5

17

16.5

16

15.5

15

14.5

14

13.5

13

12.5

12

Theoretical

variance with Theoretical

added noise floor variance
-44.318

Measured

variance

-39.329-39.739

-39.47 -43.587 -39.114

-39.143 -42.788 -38.807

-38.743 -41.912 -38.361

-38.254 -40.952 -37.908

-37.656 -39.898 -37.487

-- -36.928 -38.74 -36.483

-36.05 -37.468 -36.057

-34.996 -36.067 -35.075

-33.746 -34.523 -33.843

-32.275 -32.815 -32.491

-30.563 -30.919 -31.217

-28.587 -28.81 -29.658

-26.326 -26.457

-23.76 -23.832

-20.873 -20.91

-17.656 -17.674
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